
Adaptability and Survivability in
Spaceborne Time- and Space-Partitioned Systems

Joaquim Rosa, João Craveiro, and José Rufino
University of Lisbon, Faculty of Sciences, LaSIGE

FCUL, Ed. C6, Piso 3, Campo Grande, 1749-016 Lisbon, Portugal
{jrosa, jcraveiro}@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract—Future space missions call for innovative computing
system architectures, meeting strict requisites of size, weight,
power consumption (SWaP), cost, safety and timeliness. To
answer the aerospace industry interests, especially the European
Space Agency (ESA), the AIR (ARINC 653 in Space Real-Time
Operating System) architecture has been defined, following the
advanced notion of time and space partitioning (TSP). In order
to achieve adaptability and survivability in the face of environ-
mental changes or new mission requirements, it is of paramount
importance that onboard computing systems are reconfigurable.
In this paper we present recent and ongoing developments on
AIR Technology to achieve adaptability and survivability of AIR-
based systems, and a methodology for onboard software update
in order to add new features to the mission plan.

I. INTRODUCTION

To face future challenges, spaceborne onboard computing
system architectures should be designed to improve the space-
craft survivability and prolong the mission activity, while
obeying to strict dependability and real-time requisites. Par-
titioned architectures implementing the logical separation of
applications in criticality domains, named partitions, allow
several partitions to share the same computational infrastruc-
ture and fulfil the size, weight and power consumption (SWaP)
requisites, thus decreasing the overall cost of the mission [1],
[2]. The notion of time and space partitioning (TSP) means
ensuring that the execution of an application in one partition
does not affect other partitions’ timing requirements and that
different addressing spaces are assigned to different partitions.
The AIR Technology answers the interest from the space
industry in applying the TSP concepts to the space domain,
defining a partitioned architecture for the development of
aerospace systems and applications [3].

It has been shown that reconfigurability and software up-
gradeability can be crucial to the survival of a mission. For
example, many spacecraft exceeding their expected lifetime
have been recovered after applying healing procedures upon
the occurrence of incidents which could otherwise result in
mission degradation or total spacecraft loss [4]. The onboard
software update methodology addressed in this paper takes

This work was partially developed within the scope of the European Space
Agency Innovation Triangle Initiative program, through ESTEC Contract
21217/07/NL/CB, Project AIR-II (ARINC 653 in Space RTOS – Industrial
Initiative, http://air.di.fc.ul.pt). This work was partially supported by Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology), through the Multiannual Funding and CMU-Portugal Programs
and the Individual Doctoral Grant SFRH/BD/60193/2009.

advantage of the composability properties of the AIR archi-
tecture aiming the definition of a software development and
update process for adaptive TSP systems.

This paper is organized as follows. Section II describes the
AIR architecture. Section III explains how to take advantage
of AIR schedulability and composability. Section IV addresses
adaptability and survivability properties and mechanisms. Sec-
tion V highlights the current developments to support onboard
software update. Finally, Section VI issues concluding remarks
and presents future research directions.

II. AIR TECHNOLOGY

The AIR Technology is currently evolving to the definition
of an industrial product towards the improvement and com-
pleteness of the architecture design and engineering process.

A. System architecture

The AIR architecture, illustrated in Fig. 1, relies on the AIR
Partition Management Kernel (PMK) to enforce robust TSP. A
(real-time or generic) operating system, herein referred as Par-
tition Operating System (POS), is provided per partition. Each
POS is wrapped by the AIR POS Adaptation Layer (PAL) [3]
hiding its particularities from other AIR components.

An AIR-based system provides a way to achieve the con-
tainment of faults to the domain where they occur using the
architectural principle of robust TSP. Temporal partitioning
ensures that the real-time requisites of the different functions
executing in each partition are guaranteed. Spatial partitioning
relies on having dedicated memory and input/output (I/O)
addressing spaces for applications executing on different par-
titions.

Fig. 1. AIR system architecture and integration of partition operating systems



B. Portable Application Executive (APEX) Interface

The Application Executive (APEX) interface component
provides a standard programming interface with a service
definition derived from the ARINC 653 specification [5].
The set of available services concerns partition and pro-
cess management, time management, intra and interpartition
communication and health monitoring. The AIR architecture
implements the advanced notion of Portable APEX, ensuring
portability between the different POSs, exploiting the avail-
ability of AIR PAL wrapped functions.

C. AIR Health Monitor

The AIR architecture also incorporates a Health Monitor
(HM) component which is responsible for handling and con-
taining errors to their domains of occurrence. This compo-
nent plays an important role in achieving system adaptability
since it prevents errors detected in one process/partition from
propagating to the remaining partitions. The action to be
performed in the event of an error is defined by the application
programmer through an appropriate error handler. This error
handler is an application process which should include a
systemwide reconfigurability logic, which helps achieve sys-
tem adaptability and may comprise the redefinition of control
parameters or the issue of a different schedule request.

D. Interpartition communication

The organization of spacecraft software components in
different partitions requires interpartition communication fa-
cilities, since a function hosted in a partition may need
to exchange information with other partitions. Interpartition
communication consists of the authorized transfer of infor-
mation between partitions without violating spatial separation
constraints [3].

III. SCHEDULABILITY AND COMPOSABILITY

The AIR architecture uses a two-level scheduling scheme,
where partitions are scheduled under a predetermined se-
quence of time windows, cyclically repeated over a major time
frame (MTF). In each partition, the respective processes are
scheduled according to the native operating system’s process
scheduler (Fig. 2).

The original ARINC 653 [5] notion of a single fixed
partition scheduling table, defined offline, is limited in terms
of timeliness control and fault tolerance. To address this
limitation, the AIR Technology design incorporates the notion
of mode-based partition schedules (Fig. 2), allowing the
switch between different partition scheduling tables (PSTs)
according to different mission phases or operating modes
during the execution time, and regarding the accommodation
of component failures [3], [6]. A schedule switch can be
requested by a specifically authorized and certified partition
through the invocation of an APEX primitive [7]. This can
result from a command issued from ground control or from
the reaction to environmental conditions. The AIR Partition
Scheduler is responsible for guaranteeing to make a schedule
switch effective at the end of the respective MTF.

Fig. 2. Two-level mode-based partition scheduling

The modularity of the AIR architecture design and of its
build and integration process further enables the composability
of AIR-based systems [8]. Composability means properties
established for individual components hold also after the
components are assembled together into the system. This
allows the independent verification and validation of software
components to different software developers during the build
and integration process, facilitating the overall system certifi-
cation. From the point of view of one partition’s provider, this
further signifies that development and validation do not depend
on knowledge of the other partitions. The system integrator
is responsible for guaranteeing a correct partition scheduling,
making use of schedulability analysis tools [8], [9].

IV. ADAPTABILITY AND SURVIVABILITY

Adaptation to changing or unexpected conditions is of great
importance for a mission’s survival since it has been proven to
prolong the lifetime of unmanned space vehicles by years [4].

A. Reconfigurability

The AIR architecture provides support for adaptability and
survivability through several mechanisms, such as the mode-
based schedules, allowing the definition and switch between
multiple PSTs; process deadline violation monitoring, to detect
deadline violations in relation to the partitions’ timing re-
quirements; AIR Health Monitor, processing partition/process
errors, and; low-level event overload control through AIR
PMK adaptation mechanisms to control the timeliness of asyn-
chronous events [10], [3]. The support for onboard software
update in the AIR architecture [11], described in Section V,
plays an important role in achieving the system adaptability
and survivability, since it enables the update of system func-
tions and PSTs.

B. Achieving Adaptability

Adaptation reflects the capability of maintaining or im-
proving system effectiveness when facing internal or external
changes. By offering the possibility to host multiple PSTs and
switch among them on demand during the execution of the
system, AIR allows for (self-)adaptation of the system to the



Fig. 3. Spacecraft computing platform

mission’s different phases and to detected operational condi-
tion changes [10]. Adaptation to current operational conditions
is performed exploiting the existing resources and it may not
imply the use of update procedures. Nevertheless, we can take
profit from update facilities to improve the current features in
the spacecraft and manage/optimize resource utilization.

C. Achieving Survivability

Several failures may lead spacecraft to unpredictable and
severe conditions which could put the mission at risk. For
example, the loss of a gyroscope in a satellite could seriously
affect its attitude stability. However, industry practice has
demonstrated that recovery from these severe failures can
be achieved through the update of software components [4].
In this context, the update of software components and the
corresponding configuration procedures play a fundamental
role in the survivability of the system.

The build and integration process may benefit from devel-
opment tools allowing to verify, validate, test and simulate
system operation [12]. This includes verifying that real-time
guarantees are kept; for this purpose, scheduling tools like
Cheddar [8], [9] can allow to quickly and easily define, test
and simulate new schedules.

V. ONBOARD SOFTWARE UPDATE

We define a methodology to allow the inclusion of new
features on a spacecraft during a mission, maintaining the real-
time and safety guarantees of the original mission. This should
not affect the correct overall behaviour of the system [11].
With the ability to update software components [13], [14],
[15], applied to space missions, we can maximize the space-
craft’s lifetime and the survivability of the whole mission. The
methodology herein defined is currently under implementation.

A. Defining requirements and components

We assume that the upload of the modified software compo-
nents is supported by a (secure) communication channel and
data communication protocol. The data sent by the ground
station are received by the system partition associated to
communication functions, which is responsible for (i) the iden-
tification of the components to be updated; (ii) the allocation
of the required memory resources, and; (iii) the functional
integration of each component. The partition running the
communication functions is assigned a guaranteed processing
time. However, we assume that the update operations are
performed in a best-effort basis, thus minimizing the impact
in the timeliness of the remaining communication functions.

TABLE I
EXTENDED APEX SERVICES FOR ONBOARD SOFTWARE UPDATE

Primitive Short description

XAPEX MALLOC Allocate memory from the partition’s
free memory pool

XAPEX MFREE Deallocate a memory zone for the parti-
tion’s free memory pool

XAPEX MCLAIM Claim memory from a specified partition
for the partition’s free memory pool

XAPEX PUPDATE Apply partition software components
update

XAPEX PSTUPDATE Apply system partition scheduling table
(PST) set update

To support the introduction of onboard software update opera-
tions, the original APEX interface should be extended to cope
with appropriate services, presented in Table I.

B. Integration on spacecraft onboard platform

A typical spacecraft hosts several subsystems, consisting of
avionics functions and payload, which closely interact with
each other. Relevant examples of avionics functions are the
Attitude and Orbit Control Subsystem (AOCS), Communica-
tions, Data Handling, and Telemetry, Tracking and Command
(TTC). In AIR, these functions are hosted in different parti-
tions and share the same computational platform.

The update is performed by the Update Handler, defined
as a process/thread integrated in the partition responsible for
the communications. This partition also includes a component
for command detection, which will pass the commands issued
from the ground station to the TTC through an interpartition
communication channel (Fig. 3).

C. Methodology for onboard update

The defined onboard software update methodology exploits
the properties provided by the AIR architecture, namely with
respect to the composability inherent to the build and in-
tegration process. This may consist of the modification of
application software, systemwide configurations or simply the
definition of new PSTs, in order to upgrade the original
mission adapting it according to the new requirements. This
consists of a four-step procedure as follows:

1) Offline verification and validation of software modifica-
tions: This step corresponds to the AIR original verification
and validation process of software components to ensure that
safety and timeliness would not be compromised with the
introduction of new components. Due to the composability
properties, this may be done by the software development
teams or providers independently.

2) Extraction of updated components: The final goal of
this step is to identify which components need to be uploaded
to the spacecraft onboard computer, extract them from the
complete system object file, and create a new one composed
only of the modified components. Using appropriate tools, this
object file should be built according to a specific format in



Fig. 4. Impact of the update methodology in the software development life cycle

order to be recognized by the Update Handler. After this step,
the new object file will be uploaded to the spacecraft.

3) Transfer of updated components: In the spacecraft, the
application and PSTs are received by the partition hosting
the communication functions. The Update Handler inspects
the uploaded object and separates the application from the
PSTs, invoking the XAPEX primitives to (i) allocate and
claim memory resources; (ii) assign the updated software
components to the specific partition, and; (iii) issue a request
to apply the PST update.

4) Activation of updated components: The activation of
new PSTs can be performed as follows. The first condition to
the safe application of a new set of PSTs is that the currently
selected schedule is identical in both the existing and the
updated PSTs set. The second condition is that a schedule
switch to a PST which has been modified in the updated
set is not pending. After the new PSTs have been activated,
an uploaded application will be activated after selecting an
appropriate schedule.

D. Impact of the methodology in the software life cycle

The methodology defined for updating software components
and PSTs introduces new constraints in the software life cycle,
with major impact in the verification and validation phases and
introducing new steps, namely those related to the extraction
of the modified components that will be transferred later to the
spacecraft’s onboard computing platform. The impact of the
methodology is illustrated in Fig. 4, where only the partitions
related to new mission requirements need to be modified. The
model presented in Fig. 4 represents requirement analysis,
design and implementation, followed by the extraction and
format of the components that are being updated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we overviewed the properties achieved by
the AIR architecture and how they can be exploited to
reach adaptive time- and space-partitioned systems. Adaptation
to changing and unexpected environmental conditions is of
paramount importance, since it helps assure the mission’s
goals. Adaptation to severe incidents or to internal spacecraft
failures may take advantage of onboard software update to
prolong the lifetime of the spacecraft. Motivated by the need

to add new functions to the spacecraft during a mission or
to change the mission plans, we defined the requirements and
established a methodology for onboard software update, taking
advantage of the composability properties inherent to the build
and integration process of AIR-based systems.

Future developments of the AIR Technology involve the
update of critical software components without interrupting
the system execution, remote system monitoring and modifica-
tion of systemwide control parameters. Issues concerning the
spacecraft interaction with surrounding environment through
the use of sensors and actuators remain an important requisite.

REFERENCES

[1] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms and assurance,” SRI International, California, USA, Tech. Rep.
NASA CR-1999-209347, Jun. 1999.

[2] TSP Working Group, “Avionics time and space partitioning user needs,”
Technical Note TEC-SW/09-247/JW, Aug. 2009, ESA–ESTEC.

[3] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and
timeliness in a new generation of aerospace systems,” in Architecting
Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and
C. Gacek, Eds. Springer, 2010, vol. 6420, pp. 146–170.

[4] M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, no. 2-3, pp. 195–205, 2009.

[5] AEEC (Airlines Electronic Engineering Committee), “Avionics applica-
tion software standard interface, part 1 - required services,” Aeronautical
Radio, Inc., ARINC Spec. 653P1-2, Mar. 2006.

[6] ——, “Avionics application software standard interface, part 2 - extended
services,” Aeronautical Radio, Inc., ARINC Spec. 653P2-1, Dec. 2008.

[7] A. J. Kornecki and J. Zalewski, “Certification of software for real-time
safety-critical systems: state of the art,” ISSE, vol. 5, no. 2, 2009.

[8] J. Craveiro and J. Rufino, “Schedulability analysis in partitioned systems
for aerospace avionics,” in Proc. of the 15th IEEE Int. Conf. on Emerging
Technologies and Factory Automation, Bilbao, Spain, Sep. 2010.

[9] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible
real time scheduling framework,” Ada Lett., vol. XXIV, no. 4, 2004.

[10] J. Craveiro and J. Rufino, “Adaptability support in time- and space-
partitioned aerospace systems,” in Proc. 2nd Int. Conf. on Adaptive and
Self-adaptive Systems and Applications, Lisbon, Portugal, Nov. 2010.

[11] J. Rosa, J. Craveiro, and J. Rufino, “Exploiting AIR composability
towards spacecraft onboard software update,” in Actas do INForum -
Simpósio de Informática 2010, Braga, Portugal, Sep. 2010.

[12] A. T. Bahill and S. J. Henderson, “Requirements development, verifica-
tion, and validation exhibited in famous failures,” Systems Engineering,
vol. 8, no. 1, pp. 1–14, 2005.

[13] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software update
service with self-protection capabilities,” in DATE, 2010, pp. 903–908.

[14] M. Hicks, “Dynamic software updating,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 27, no. 6, Nov. 2005.

[15] M. Wahler, S. Ritcher, and M. Oriol, “Dynamic software updates for
real-time systems,” in Proc. HotSWUp’09, Orlando, FL, USA, Oct. 2009.


