
Towards Non-invasive Run-time Verification of
Real-Time Systems

Ricardo C. Pinto
LaSIGE/Faculty of Sciences

University of Lisbon
ricardo.pinto@fc.ul.pt

José Rufino
LaSIGE/Faculty of Sciences

University of Lisbon
ruf@di.fc.ul.pt

Abstract—Support for Run-time Verification (RV) has mostly
been provided by software mechanisms, via the instrumentation
of code for observing (monitor) and handling deviations from
specification. Although this approach is fitting for some domains,
it can have a nefarious influence in embedded real-time systems,
impacting the system from the analysis to the operation stages.

A novel alternative to code instrumentation is the embedding of
such mechanisms directly in hardware, thus negating the impact
in system properties, namely timeliness. The availability of soft-
processors and companion System-on-a-Chip (SoC) Intellectual
Property cores enable the hardware-based approach to RV.

This paper addresses the foundations for RV support via
hardware mechanisms. A flexible observer entity is defined, to
be merged into a SoC architecture. Monitoring is performed
at the SoC bus that interconnects processor and peripherals,
enabling the gathering of information regarding events of interest
occurring during system execution and relaying it to external
entities for handling.

I. INTRODUCTION

Run-time Verification (RV) is a well-know technique in
the software world to perform the verification of a system.
It is applied to a software design, to be used throughout
its life-cycle stages - from early verification to operational
deployment. The cornerstone of RV is the monitoring of values
and events, and then comparing them to a given specification.

The classical approach to RV has been through code instru-
mentation. The system software is instrumented with specific
functions which are not part of the functional specification
of the system. These functions are executed during run-time,
monitoring and assessing the state of the system, i.e. its
adherence to the functional requirements. Instrumented code
is therefore closely intertwined with the code dictating the
progression of the system itself (see Figure 1).

Fig. 1: Task Switching and Execution with RV

This work was partially supported by the EC, through project
IST-FP7-STREP-288195 (KARYON) and by FCT, through project
PTDC/EEI-SCR/3200/2012 (READAPT), by LaSIGE Strategic Project
PEst-OE/EEI/UI0408/2014, and Doctoral Grant SFRH/BD/72005/2010.

The usage of current RV techniques in real-time systems is
a double-edged sword: whilst the systems can benefit greatly
from RV, the overhead imposed by code instrumentation raises
issues stemming in system design up to analysis and operation.
At system design, adding code to a real-time task implies
a higher Worst-Case Execution Time (WCET) which must
be computed for schedulability purposes. At operation, the
observation of the system interferes with the system itself due
to the observer effect1.

An illustration of such disturbances can be seen in Figure 1,
where a piece of code has been added to measure the switching
time of a real-time task. The task τi has a computed switching
time at ts. The effective time of switching is tr = tp + tj ,
where tj is the time added by execution jitter, including RV
code. There are additional disturbances caused by other RV
statements, which result in a higher WCET than a task without
RV.

A solution for the RV issues raised by code instrumentation
comes from the hardware domain. The growth in the usage
of reconfigurable logic supporting System-on-a-Chip (SoC)
designs (soft-processors and peripherals) enables the design of
innovative solutions to address issues raised by software, and
RV is no exception. The inclusion of non-invasive, hardware-
based RV mechanisms negates the penalties in timeliness and
performance, thus providing results with higher accuracy and
without any impact on the system itself.

This paper presents the current work on designing and
implementing a hardware-based observer entity aiming at
non-intrusive event monitoring. Such entity will provide the
support for effective, non-intrusive RV in embedded real-time
systems. The remainder of this paper is organized in the
following manner: Section II define the System Model to be
used in the definition of an observer entity for RV; Section III
details the design, specification and implementation in a SoC
platform of such observer entity; Section IV presents related
work in hardware support for RV and Section V concludes this
paper discussing future work directions for achieving robust
RV.

1The observer effect designation stems from physics, where the act of
observing a phenomenon interferes with its characteristics.



II. SYSTEM MODEL

The observer entity is to be implemented in an embedded
real-time system, consisting of an execution platform com-
prised both of hardware and software. Therefore, the definition
of such platform is in order. Furthermore, a definition of an
event is also necessary, formalizing what should be captured
by the observer entity.

A. Real-time System Execution

The execution of a real-time system relies on two supporting
platforms: software, through a Real-Time Operating System
(RTOS) providing scheduling and dispatching facilities, to-
gether with system primitives for Input/Output (I/O) activities;
hardware, through an embedded computing platform support-
ing the execution of the software entity.

1) Hardware: Current embedded systems are implemented
resorting to computing platforms which are integrated in
a single integrated circuit. An instance of such computing
platform is a microcontroller, which has a processing element
(CPU) and several I/O peripherals to exchange data with the
environment or other systems. Such systems are known as
System-on-a-Chip (SoC), due to its level of integration. A
diagram showing such a system in presented in Figure 2.

Fig. 2: Generic SoC Computing Platform Architecture

The hardware platform provides the resources necessary for
the software entity: Processing Element, offering the processor
resources; I/O Interfaces, exchanging data with external sys-
tems and/or the environment; Memory, to hold the software
executable and state (variables); Timer Unit, providing the
system with the ability to count time; Interrupt Controller,
managing the interrupt requests coming from peripherals and
feeding them to the processing element.

These components are interconnected through a SoC bus,
in a (multi-)master/slave. Components are memory-mapped,
with each component on the SoC being accessed through a
range of addresses. The operations to be performed are either
read or write, in a similar fashion to a memory device. These
operations are initiated through master components, which are
the only ones allowed to initiate a new transfer. The bus also
embeds the interrupt request lines, allowing the slave devices
to signal the masters of their need to communicate, e.g. signal
they have data available to be transferred to the master.

All instructions to be executed by the processing element
have to pass through the bus, coming from the memory
component. The transfer of data through the bus can be
modelled as Bustrx

def
= (address, data, operation), where:

address is the value of the addressed component; data is the
value of the data being exchanged; operation is the direction
of the data, e.g. read or write. Additional control signals, e.g.
transfer length, are not of interest for monitoring purposes.
Interrupts, Busint, do not carry additional information.

2) Software: The software platform comprises a set of tasks
τi, mapping the intended functional specification into software.
The execution of the tasks is supported by a RTOS. The usage
of a RTOS provides the scheduling and dispatching of the tasks
together with primitives to perform I/O activities, inter-task
synchronization and communications.

Task execution cannot be decoupled from RTOS execution.
Every time a task invokes a system primitive, RTOS facilities
are used to fulfill its function, thus deviating the task execution
from its designed flow. Furthermore, a scheduling function
is performed periodically, deciding which task should be
given processor resources. A companion dispatch function
performesa the actual task switching. An illustration with an
example of these is shown in Figure 3.

Fig. 3: Generic Task Execution Model

During task execution in an RTOS, there are at least three
components: Task Switch, when the RTOS dispatches the task
to be run; Task Processing, with code of the task itself;
System Call for I/O activities or inter-task synchronization
and communication. An additional component is the Interrupt
Processing, which is executed upon interrupt signalling.

B. Events

An event is the information gathered through monitoring of
a parameter of interest, e.g. memory address, interrupt line.
An event ε is defined as a tuple ε

def
= (t, s, i) where: t is

the time of occurrence; s is the source of the event; i is
the specific information pertaining to the event. The time t
increases monotonically, establishing event causality. Two or
more events may occur at the same time, i.e. tk+1 ≥ tk.

Broadly speaking, events can have two origins: hardware,
such as interrupts, memory accesses; software, such as values
of variables, flow of execution (instructions) or interrupt
handling routines.

The identification of events, both in time and source is
the basic functionality required for monitoring. Additional
information regarding the event enrich the quality of the
information provided by the monitoring, and thus lead to the
support of RV mechanisms.



III. OBSERVER ENTITY

The observer does not interfere with the behaviour of the
observed system, thus negating the observer effect. The prop-
erties of the observer are: non-intrusive, not requiring code
instrumentation nor affecting system operation; configurable,
being able to accommodate different event triggers.

A. Design

Using the previously defined system model as working
basis, an Observer Entity (OE) is defined, to be integrated
in an embedded computing platform equivalent to the one
presented in Figure 2. The ability to connect to an internal
bus architecture is crucial, enabling the observation of data
transfers and signalling taking place inside the computing
platform, namely instructions and interrupts.

The ability to monitor interrupts and memory addresses
allows to measure the latency of a task switch, from the instant
the Timer Unit signals the passing of a tick to the scheduler
to the time the task switch is completed. The design of an
entity with the previous requirements results in the architecture
shown in Figure 4.

Fig. 4: Observer Entity Architecture

The OE shown in Figure 4 is plugged to the internal buses
of a SoC architecture, and is comprised of several modules:
Bus Interfaces, managing the physical interface to the buses
and performing the detection of bus activity, e.g. bus transfer
or interrupt; Management Interface, handling the support for
configuration via the bus itself; Observer Configuration, stor-
ing the aforementioned configuration, i.e. which events should
be detected; Event Observer, detecting events of interest based
on the configuration and tagging them to be relayed to other
systems; UART2, providing an Out-of-band (OOB) interface
for relaying the detected events to another system, e.g. a
Personal Computer (PC).

The configuration of the OE can be performed through:
the system being monitored itself, preferably upon system
initialization; OOB, via the UART. The key-point of the OE
is that it can be reconfigured after the system is deployed.
Such architecture effectively enables non-intrusive hardware
monitoring, with the flexibility of being able to accommodate
detection of different events.

The operation of the OE is performed at every hardware
clock cycle, synchronously with the bus. The OE continuously

2UART - Universal Asynchronous Receiver/Transmitter

monitors the bus to detect the start of a new bus transfer
operation, or the assertion of an interrupt line. The operation
of the OE is described by the algorithm shown in Algorithm 1.

Algorithm 1: Event Monitoring
Input: System clock hardware clock tick
Output: Event evt
Initialize(Config)
foreach hardware clock tick do

numTicks ← numTicks + 1
if newEvent(Bus) then

if ∃ id ∈ Config : Config[id] = Bustrx.address
then

evt.time ← numTicks
evt.source ← Config[ID].source
evt.info ← Bustrx.data
outputEvent(evt)

foreach id ∈ Config : Config[id] = Busint do
evt.time ← numTicks
evt.source ← Config[ID].source
evt.info ← null
outputEvent(evt)

The tick count numTicks increases monotonically with
each hardware clock tick. For a 50 MHz clock, it increases
every 20 ns. If bus activity is detected, the configuration table
is checked and if there is a match, the event is tagged with:
timestamp, source and info, e.g. data in a memory access.

B. Implementation

The implementation of the OE architecture shown in Fig-
ure 4 is being performed in VHDL3, and integrated in a
LEON3 SoC [1], which includes the LEON3 soft-processor.
The LEON3 processor implements the SPARC V8 Instruction
Set Architecture (ISA) [2], and is connected to the peripherals
through ARM Advanced Microcontroller Bus Architecture
(AMBA) [3]. A diagram showing the LEON3 SoC together
with the Observer is shown in Figure 5.

Fig. 5: Observer Entity on a LEON3 System-on-a-Chip

The SoC design provides several IP cores implementing I/O
interfaces, together with a Memory Controller for Random-
Access Memory (RAM) and Read-Only Memory (ROM).

3VHDL stands for Very High Speed Integrated Circuit Hardware Descrip-
tion Language



The AMBA bus is a high performance multi-master bus.
Data is transferred in parallel, with one transfer per clock-
cycle. Addressing is performed through memory-mapping,
where each component in the SoC is seen as a range of
memory addresses. The memory where software code resides
is no exception, exposing its accesses to hardware monitoring.

The specification [3] defines two types of bus: AMBA High-
performance Bus (AHB), for high-throughput components,
e.g. CPU, RAM, Ethernet; Advanced Peripheral Bus (APB),
for low throughput components, e.g. UART, General Purpose
I/O (GPIO). Both these buses are connected to the OE, en-
abling monitoring of data exchange between SoC components.

The implementation present in the LEON3 SoC embeds the
interrupt request lines of the peripherals in the AMBA bus.
Such embedding eases the monitoring of both data transfers
and interrupt requests, since both are available through the
same bus interface.

The logical structure of the information pertaining to a
monitored event is shown in Figure 6, described in VHDL.

−− Event
t y p e e v e n t t i s r e c o r d

Time : t i m e s t a m p t ; −− Time of o c c u r r e n c e
Source : e v e n t s o u r c e t ; −− Source
I n f o : e v e n t i n f o t ; −− S p e c i f i c Data

end r e c o r d e v e n t t ;

−− Event Source
t y p e e v e n t s o u r c e t i s r e c o r d

ID : i n t e g e r ; −− ID : Task t1 , I n t e r r u p t 15
C l a s s : i n t e g e r ; −− C l a s s e s , e . g . hw or sw

end r e c o r d e v e n t s o u r c e t ;

−− Event S p e c i f i c Data
t y p e e v e n t i n f o t i s r e c o r d

a d d r e s s : a d d r e s s t ; −− Address
d a t a : d a t a t ; −− Data
o p e r a t i o n : o p e r a t i o n t ; −− O p e r a t i o n , e . g . r e a d

end r e c o r d e v e n t i n f o t ;

Fig. 6: VHDL Description of Event Information

The timestamp_t data type should be wide enough
to avoid rollover of time information, and is dependent on
the system clock frequency. The rollover can be seen as a
violation of the monotonicity, where time goes backward. The
Source field stores data pertaining to the source of the event.
Furthermore, it can be configured with the Class extra field,
to provide context for the event specific data field, Info. The
event contained in the format shown in Figure 6 is converted
into a stream of bits to be transmitted by the UART via a
VHDL function.

C. Event Data Output & Exploitation
The usage of an UART as an OOB mechanism enables

the processing and exploitation of the generated event data
on an external system, such as a PC. Therefore, the OE can
be used to: characterize the system during the Verification &
Validation (VV) stage, including timeliness; log the behavior
for performance and timeliness assessment; enable proactive
fault-tolerance mechanism design and execution.

The data output format is configurable via the Observer
Configuration module, and can be formatted to be directly used
by specific verification and visualization tools. The formatting
is performed directly in hardware, by using specific serializing
functions to convert the storage representation of Figure 6 into
a stream of bits to be output by the UART. Output of raw
data together with software filtering on the host system is also
possible, enabling flexible monitoring data exploitation.

An envisaged visualization tool to be used with the OE is
Grasp [4]. Grasp was designed for the visualization of real-
time system execution, namely task execution and switching.
Such a tool enables the verification of scheduling information,
by visualizing the task execution and preemption points.

IV. RELATED WORK

The design of hardware RV mechanisms has been receiving
a growing interest. A first approach to monitoring was intro-
duced in [5], with minimal code instrumentation. The approach
in [6] solved the instrumentation issue, using a dedicated CPU.

Some of the the approaches address both the issue of moni-
toring and verification in a single instance [7]. The verification
procedure is mapped into soft-microcontroller units, embedded
within the design, and use formal languages such as past-time
Linear Temporal Logic (ptLTL) for verification, with clauses
checked by a CPU embedded in the design.

V. CONCLUSION AND FUTURE WORK

Online monitoring and Run-time Verification (RV) of em-
bedded real-time systems is a topic which is expected to
grow in the coming years, thrusted by the design of au-
tonomous control applications. The application of RV to real-
time systems, however, brings an overhead which may be
too costly, due to the impact in timeliness. The availability
of soft-processors and SoC designs opens room for novel
monitoring and RV, supporting non-invasive hardware-based
RV for autonomous applications.

The provision of a reconfigurable and non-invasive Observer
Entity (OE) for monitoring is the first step towards more
sophisticated mechanisms and services. The data gathered by
the OE can be used to feed verification clauses, thus enabling
flexible non-invasive hardware-based RV.

REFERENCES

[1] GRLIB IP Library Users Manual, Aeroflex Gaisler A.B., Apr. 2014.
[Online]. Available: http://gaisler.com/products/grlib/grlib.pdf

[2] The SPARC Architecture Manual, SPARC International Inc., 1992.
[3] ARM Limited, AMBA Specification, ARM Specification 2.0, May 1999.
[4] M. Holenderski, M. van den Heuvel, R. J. Bril, and J. J. Lukkien,

“Grasp: Tracing, visualizing and measuring the behavior of real-time
systems,” in International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), 2010, pp. 37–42.

[5] M. El Shobaki and L. Lindh, “A Hardware and Software Monitor for
High-level System-on-Chip Verification,” in 2001 International Sympo-
sium on Quality Electronic Design, 2001, pp. 56–61.

[6] J. C. Lee, A. S. Gardner, and R. Lysecky, “Hardware Observability
Framework for Minimally Intrusive Online Monitoring of Embedded
Systems,” Engineering of Computer-Based Systems, IEEE International
Conference on the, vol. 0, pp. 52–60, 2011.

[7] T. Reinbacher, M. Függer, and J. Brauer, “Runtime verification of
embedded real-time systems,” Formal Methods in System Design, pp.
1–37, 2013.


