Machine Learning with Big Data

Specialized distributed systems for
machine learning purposes




Overview

" Why distribute machine learning?

® Systems
- Map-Reduce — Hadoop
- Resilient Distributed Datasets (RDD) — Spark
- Parameter Server
- Tensor Flow

® Evaluation
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Why distribute?

®* Machine learning? The more data, the better

- But, required resources increase constantly

" Big companies gather *bytes of data per day

- Processable for data mining, not machine learning

* Not all tasks are eligible for data mining, such
as classification



Distributed approach

®* Machine learning is typically a sequential task
- The “model” is a centralized object
- Each item it learns affects its state

® Crunching this data is unfeasible in a single
machine — use a distributed approach

®* How to distribute machine learning?
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Map-Reduce architecture
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Map-Reduce ideas ‘g

" Split “splittable” problem to workers (map)
" Gather results from workers (reduce)

" Main innovation is on the algorithm itself

- Particularly good for text processing, but not
thought for a very specialized task
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Resilient Distributed Datasetsp

“Formally, an RDD is a read-
only, partitioned collection of
records.” [1]

RDDs can only be created
through deterministic
operations on (1) data in
storage or (2) other RDDs

Operations include map, filter,
and join
Operations are stored in RAM

An RDD has enough
information to be
reconstructed after a failure

Persistence on disk
automatically or on demand
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RDDs vs Map-Reduce

" Allows data reuse for (e.g.) iterative machine
earning and graph algorithms

" Recovery after failures is faster

" Requires more RAM (expensive machines)
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Parameter Server

® Specific for machine learning
® Assumes features are already extracted
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Map-Reduce Parameter Server
* Foronejob * Foronejob
- One master - K masters
- N slaves - Jslaves, j > k

" Master tracks job state  ® Stateis shared among

" Jobs advance in map- Servers
reduce rounds ® Features are learned
continuously, in a
distributed fashion
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Job attribution

" Job attribution and result gathering can be
Sync or async

- Sync: learning converges in fewer steps
- Async: more steps can be performed vs sync

" Effectively, it parallelizes learning at cost of
converging the state



Fault tolerance

* Fault tolerance through
rescheduling jobs

® Replication by
duplicating k neighbors

Figure 7: Server node layout. [2]

22



Systems
TENSOR FLOW



vi™s
Tensor Flow l‘

" Specific for machine learning

" Similar to/based on parameter server, but
adds efficiency mechanisms
- Plans required jobs

- Jobs are distributed to the most adequate
hardware available

- Uses specialized, efficient software

" How?
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Job attribution l‘

" Transform algorithm (task) into a graph format

® Evaluates the available resources
- CPUs
- GPUs (for acceleration)

" Attributes the nodes (jobs) of the graph to the
resources
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Job attribution l‘

Each job is a set of operations

Operations are mathematical, such as matrix
addition

Each operation is implemented in a kernel
A large set of kernels is available

- The set is expansible



Architecture ‘
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Architecture
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Architecture

Communication
Synchronization
(as parameter server)
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Hadoop and Spark

* Amazon EC2 m1l.xlarge 300 - ® Hadoop
. HadoopBinMem

machines _
@250 = " Spark

- 4 cores aEJ ~

- 15GB RAM =
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(a) Logistic Regression
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Parameter Server

® Sparse Logistic Regression

- Ad click prediction dataset with 170 billion
examples and 65 billion unique features

- This dataset is 636 TB

- Parameter server on 1000 machines:
= 16 cores, 192GB DRAM, connected by 10 Gb Ethernet
= 800 workers, and 200 parameter servers

- The cluster was in concurrent use by other
(unrelated) tasks during operation.



Parameter Server

® Sparse Logistic Regression
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Figure 9: Convergence of sparse logistic regression. The

goal is to minimize the objective rapidly. 34



Parameter Server

® Sparse Logistic Regression
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t_:-.E Method Consistency LOC
@ System A | L-BFGS Sequential 10,000
% System B | Block PG | Sequential 30,000
O 106
210 Parameter Bounded Delay 3
o Server Block PG KKT Filter 300
Table 3: Systems evaluated.
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Figure 9: Convergence of sparse logistic regression. The

goal is to minimize the objective rapidly.
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Tensor Flow

" Google’s Inception-v3 model (Google image
recognition system using neural networks)

" 17 Param. servers, each with 8 lvyBridge cores

® Variable number of workers, each with

- NVIDIA K40 GPU (12GB GDDRS5, 1.43 double-
precision Tflops, 4.29 single-precision Tflops)

- 5 IvyBridge cores
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Conclusions

" Map-Reduce covers a large set of problems,
but...

" Specific problems require specialized
approaches

" Parameter Servers and Tensor Flow specialize
in math-based problems, with clear benefits
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Appendix

= Spark
- https://github.com/apache/spark
- Built with Maven

= Parameter server
- https://github.com/dmlc/ps-lite
- Built with Make build system

®* TensorFlow
- https://github.com/tensorflow/tensorflow/
- Install with python package manager pip
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