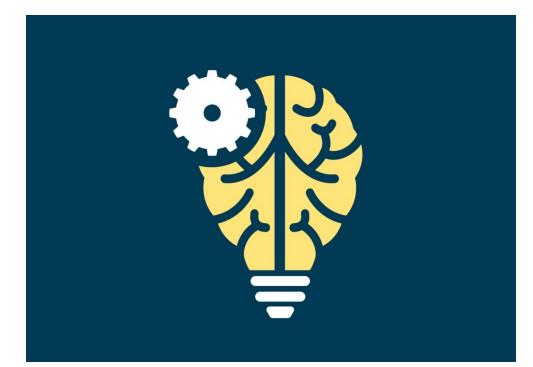
Machine Learning with Big Data

Specialized distributed systems for machine learning purposes

Overview

- Why distribute machine learning?
- Systems
 - Map-Reduce Hadoop
 - Resilient Distributed Datasets (RDD) Spark
 - Parameter Server
 - Tensor Flow
- Evaluation



WHY DISTRIBUTE MACHINE LEARNING?

Why distribute?

- Machine learning? The more data, the better
 - But, required resources increase constantly

- Big companies gather *bytes of data per day
 - Processable for data mining, not machine learning

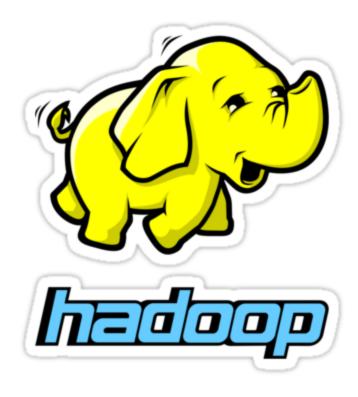
 Not all tasks are eligible for data mining, such as classification

Distributed approach

- Machine learning is typically a sequential task
 - The "model" is a centralized object
 - Each item it learns affects its state

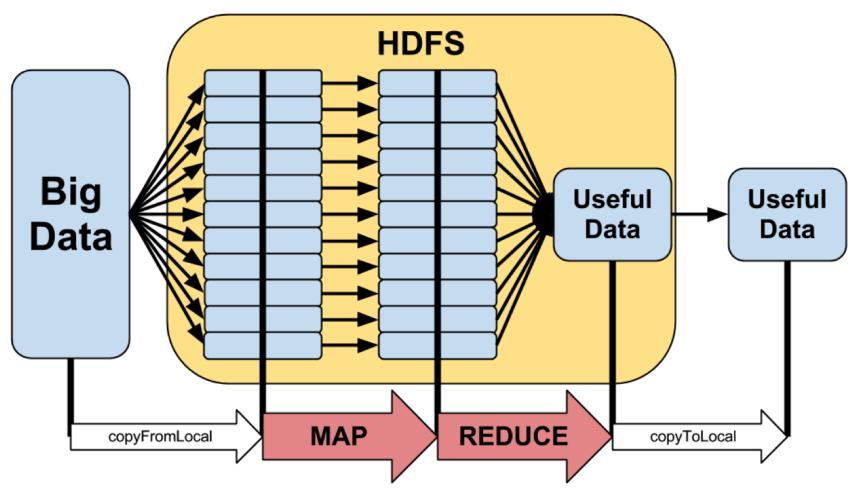
 Crunching this data is unfeasible in a single machine – use a distributed approach

• How to distribute machine learning?



Systems HADOOP

Map-Reduce architecture



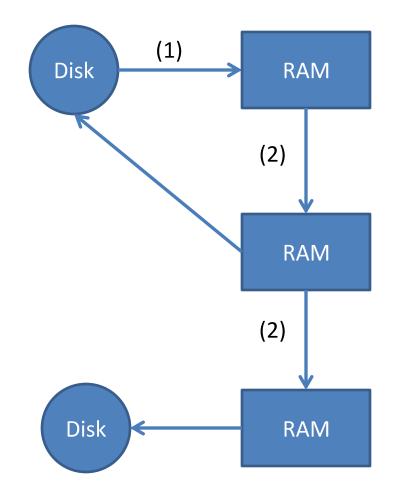
Map-Reduce ideas

- Split "splittable" problem to workers (map)
- Gather results from workers (reduce)

- Main innovation is on the algorithm itself
 - Particularly good for text processing, but not thought for a very specialized task

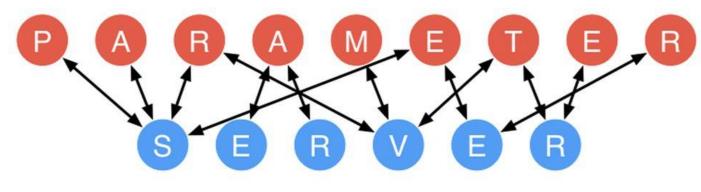
Resilient Distributed Datasets

- "Formally, an RDD is a readonly, partitioned collection of records." [1]
- RDDs can only be created through deterministic operations on (1) data in storage or (2) other RDDs
- Operations include map, filter, and join
- Operations are stored in RAM
- An RDD has enough information to be reconstructed after a failure
- Persistence on disk automatically or on demand



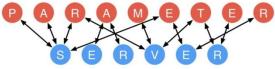
RDDs vs Map-Reduce

- Allows data reuse for (e.g.) iterative machine learning and graph algorithms
- Recovery after failures is faster
- Requires more RAM (expensive machines)

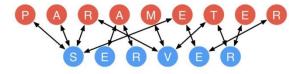


Systems

PARAMETER SERVER



- Specific for machine learning
- Assumes features are already extracted

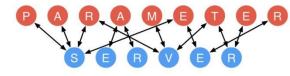


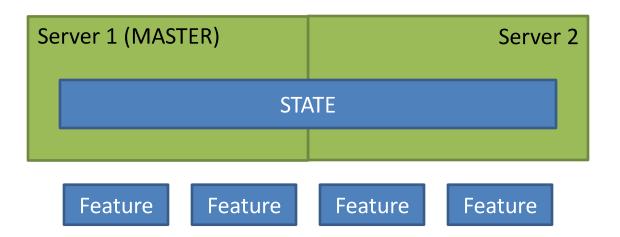
Map-Reduce

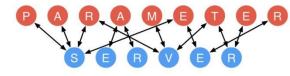
- For one job
 - One master
 - N slaves
- Master tracks job state
- Jobs advance in mapreduce rounds

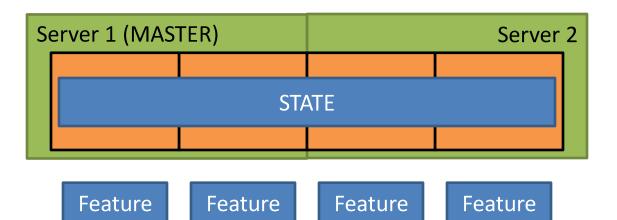
Parameter Server

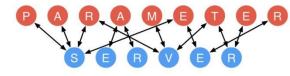
- For one job
 - K masters
 - J slaves, j > k
- State is shared among servers
- Features are learned continuously, in a distributed fashion

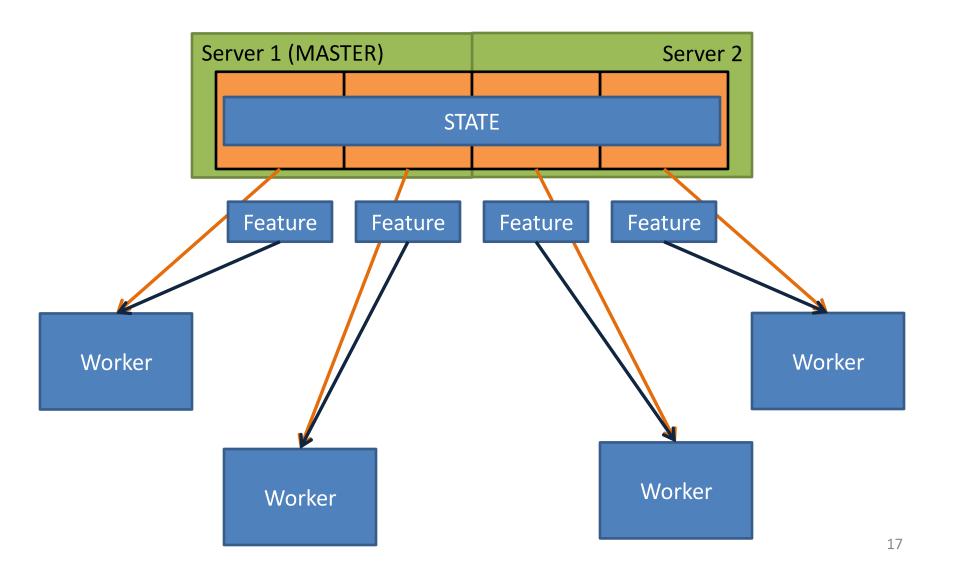


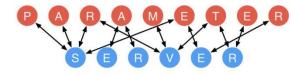


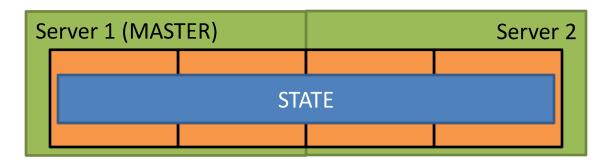


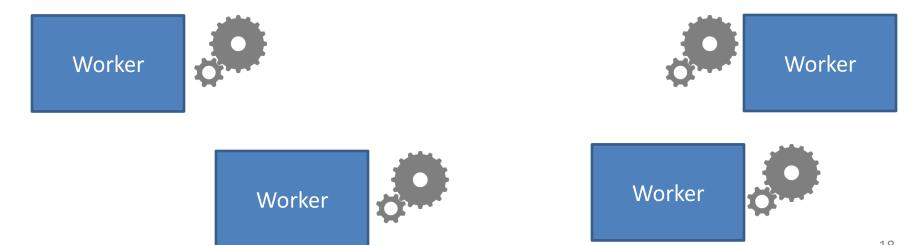


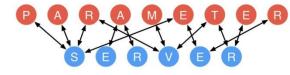


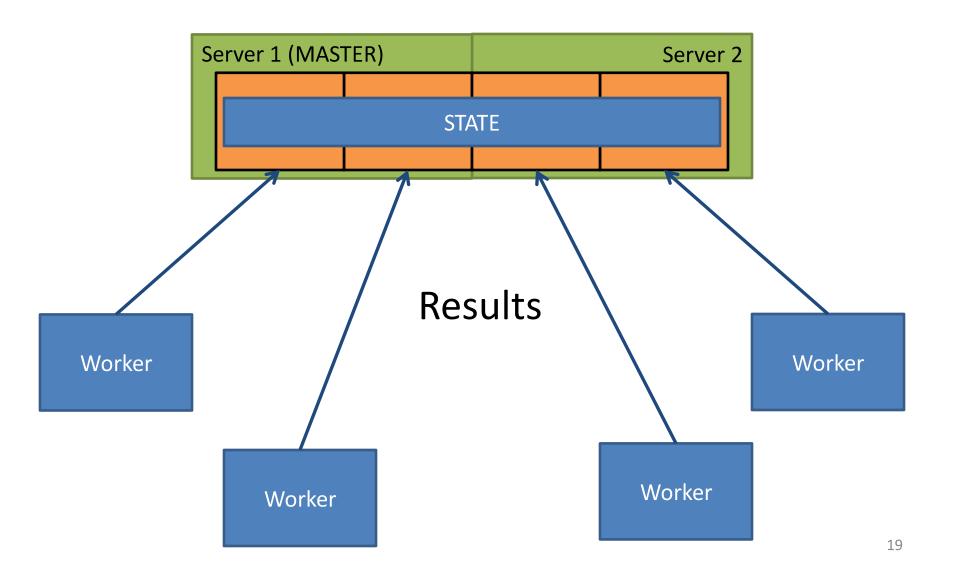


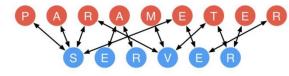


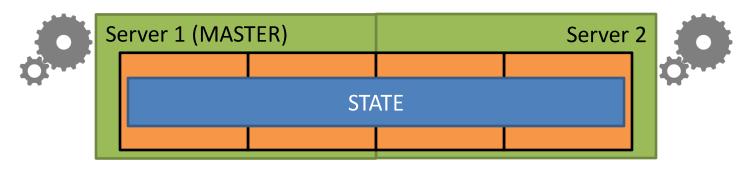




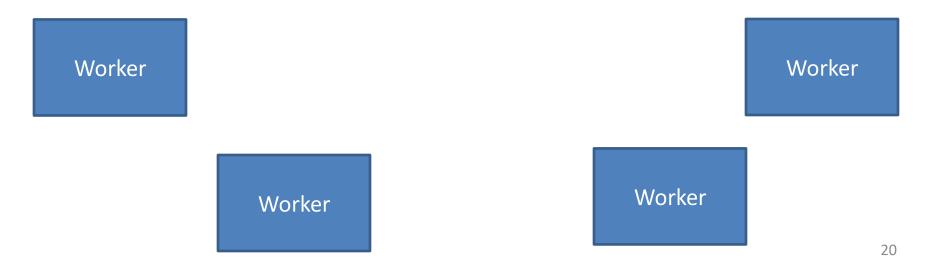


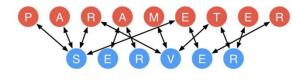






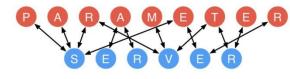
Merge Replication





Job attribution

- Job attribution and result gathering can be sync or async
 - Sync: learning converges in fewer steps
 - Async: more steps can be performed vs sync
- Effectively, it parallelizes learning at cost of converging the state



Fault tolerance

- Fault tolerance through rescheduling jobs
- Replication by duplicating k neighbors

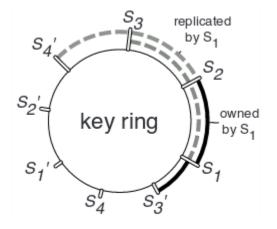
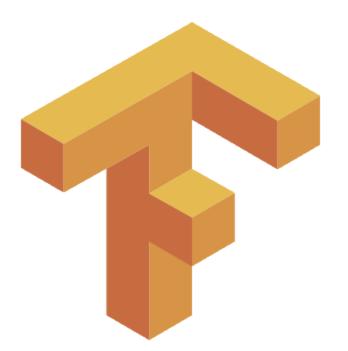


Figure 7: Server node layout. [2]



Systems TENSOR FLOW

Tensor Flow

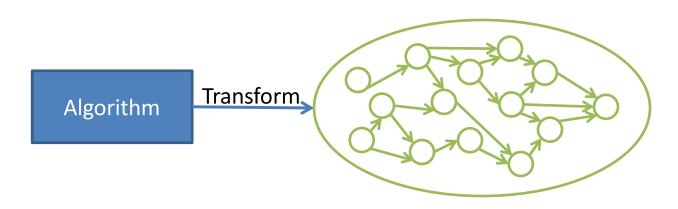
- Specific for machine learning
- Similar to/based on parameter server, but adds efficiency mechanisms
 - Plans required jobs
 - Jobs are distributed to the most adequate hardware available
 - Uses specialized, efficient software
- How?

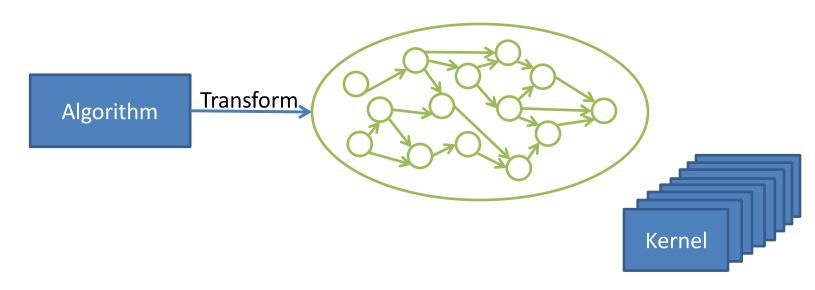
Job attribution

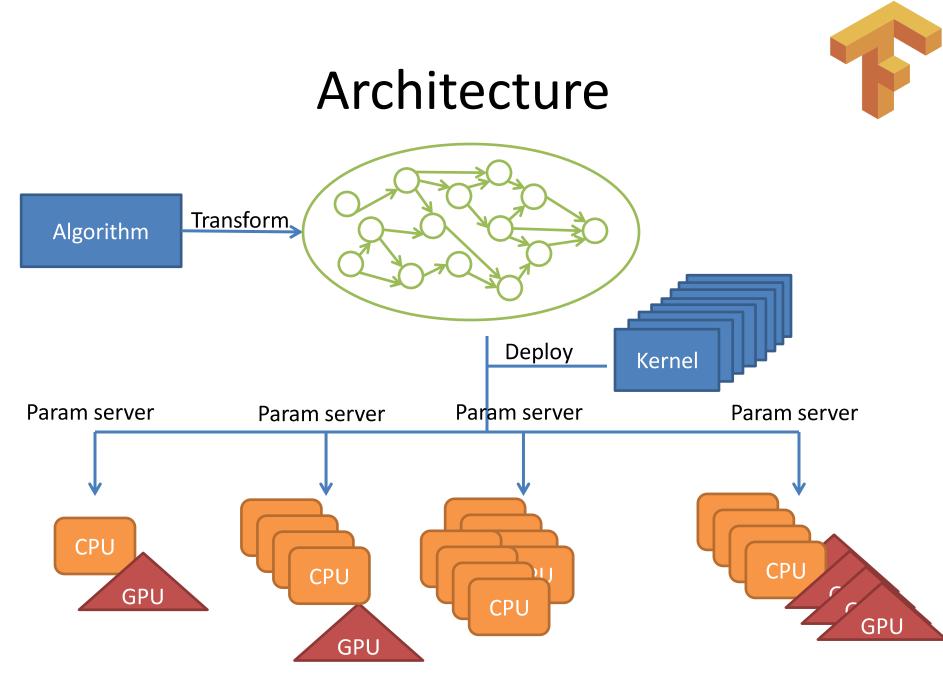
- Transform algorithm (task) into a graph format
- Evaluates the available resources
 - CPUs
 - GPUs (for acceleration)
- Attributes the nodes (jobs) of the graph to the resources

Job attribution

- Each job is a set of operations
- Operations are mathematical, such as matrix addition
- Each operation is implemented in a kernel
- A large set of kernels is available
 - The set is expansible







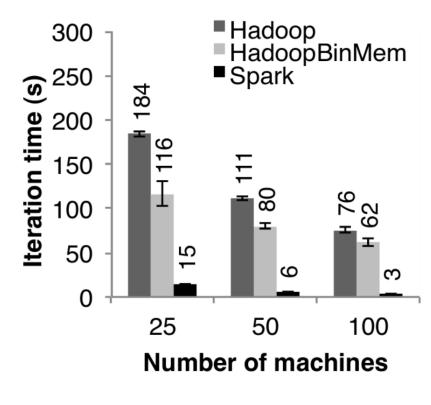
Architecture Communication Synchronization (as parameter server) Param server Param server Param server Param server CPU CPU CPU GPU CPU GPU

GPU

EVALUATION

Hadoop and Spark

- Amazon EC2 m1.xlarge machines
 - 4 cores
 - 15GB RAM



(a) Logistic Regression

- Sparse Logistic Regression
 - Ad click prediction dataset with 170 billion examples and 65 billion unique features
 - This dataset is 636 TB
 - Parameter server on 1000 machines:
 - I6 cores, 192GB DRAM, connected by 10 Gb Ethernet
 - 800 workers, and 200 parameter servers
 - The cluster was in concurrent use by other (unrelated) tasks during operation.

Sparse Logistic Regression

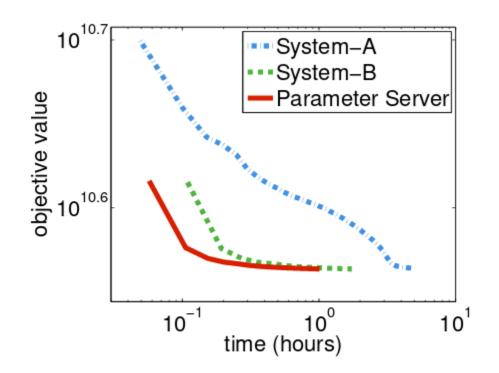


Figure 9: Convergence of sparse logistic regression. The goal is to minimize the objective rapidly.

Sparse Logistic Regression

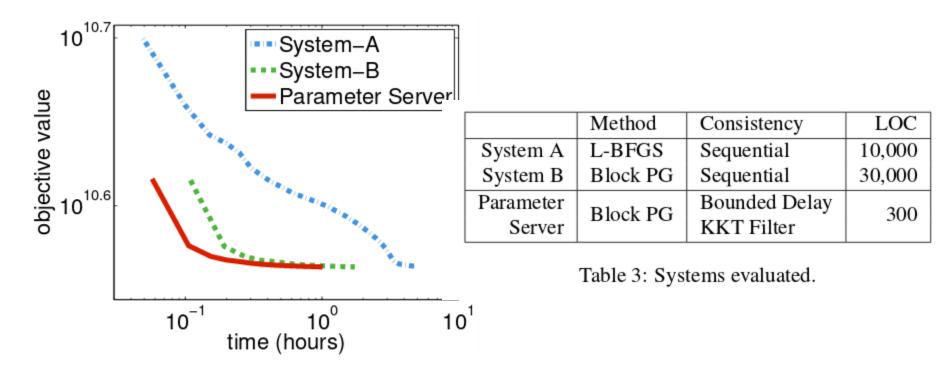


Figure 9: Convergence of sparse logistic regression. The goal is to minimize the objective rapidly.

Tensor Flow

- Google's Inception-v3 model (Google image recognition system using neural networks)
- 17 Param. servers, each with 8 IvyBridge cores
- Variable number of workers, each with
 - NVIDIA K40 GPU (12GB GDDR5, 1.43 doubleprecision Tflops, 4.29 single-precision Tflops)
 - 5 IvyBridge cores

Tensor Flow

Conclusions

- Map-Reduce covers a large set of problems, but...
- Specific problems require specialized approaches
- Parameter Servers and Tensor Flow specialize in math-based problems, with clear benefits

Bibliography

[1] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012.

 [2] Li, Mu, et al. "Scaling distributed machine learning with the parameter server." 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
2014.

[3] Abadi, Martín, et al. "TensorFlow: A system for largescale machine learning." arXiv preprint arXiv:1605.08695 (2016).

Appendix

- Spark
 - https://github.com/apache/spark
 - Built with Maven
- Parameter server
 - https://github.com/dmlc/ps-lite
 - Built with Make build system
- TensorFlow
 - https://github.com/tensorflow/tensorflow/
 - Install with python package manager pip