Assumptions:
The Trojan Horses of Secure Protocols

Paulo Verissimo

Univ. Lisboa
pjvedi.fc.ul.pt

Abstract. Secure protocols rely on a number of assumptions about the
environment which, once made, free the designer from thinking about
the complexity of what surrounds the execution context.

Henceforth, the designer forgets about the environment and moves on
proving her algorithm correct, given the assumptions. When assumptions
do not represent with sufficient accuracy the environment they are sup-
posed to depict, they may become the door to successful attacks on an
otherwise mathematically correct algorithm. Moreover, this can happen
as unwitting to systems as a Trojan Horse’s action.

We wish to discuss the theoretical underpinnings of those problems
and evaluate some recent research results that demonstrate a few of those
limitations in actual secure protocols.

1 Introduction

Secure protocols rely on a number of assumptions about the environment which,
once made, free the designer from thinking about the complexity of what sur-
rounds the execution context. Henceforth, the designer forgets about the envi-
ronment and moves on proving her algorithm correct, given the assumptions.
When assumptions do not represent with sufficient accuracy the environment
they are supposed to depict, they may become the door to successful attacks on
an otherwise mathematically correct algorithm. Moreover, this can happen as
unwitting to systems as a Trojan Horse’s action.

Intrusion Tolerance has become a reference paradigm for dealing with faults
and intrusions, achieving security (and dependability) in an automatic way. How-
ever, there are issues specific to the severity of malicious faults (attacks and
intrusions) that made the problems and limitations introduced above very vis-
ible and, what is more, very plausible. Intrusion-tolerant protocols that deal
with intrusions much along the lines of classical fault tolerance, like for example
Byzantine agreement, atomic broadcast, state machine replication, or threshold
secret sharing, have become a reference in this field.

Using them as example, we wish to discuss the theoretical underpinnings of
those problems and evaluate some recent research results that demonstrate a
few of those limitations in actual secure protocols.

V. Gorodetsky, I. Kotenko, and V.A. Skormin (Eds.): MMM-ACNS 2007, CCIS 1, pp. 34-FI] 2007.
© Springer-Verlag Berlin Heidelberg 2007

pjv
Note
P. Verissimo. Assumptions: The Trojan Horses of Secure Protocols. In V. Gorodetsky, I. Kotenko, and V.A. Skormin (Eds.): "Mathematical Methods, Models and Architectures for Computer Networks Security" (MMM-ACNS) 2007, CCIS 1, pp. 34-41, 2007. Springer-Verlag.

Assumptions: The Trojan Horses of Secure Protocols 35

2 Classical Distributed Algorithms Design

The design of distributed algorithms follows a well-determined path and fault/
intrusion-tolerant (FIT) algorithms are no exception. The basic proposition un-
derlying the design of FIT algorithms is, informally:

FIT - Given n processes and f a function of n, and a set H of assumptions
on the environment, then for at least n — f correct processes, algorithm A
satisfies a pre-defined set of properties P, i.e. executes correctly.

Classical distributed algorithms design has focused its attention on “algorithm
A satisfies a pre-defined set of properties P, i.e. executes correctly”, consider it
the mathematics viewpoint: assumptions are accepted as a given, and it is proved
that the algorithm satisfies the properties.

There is nothing wrong with this in principle, but how about looking critically
at other parts of the proposition? For example, “a set H of assumptions on
the environment”. In fact, the usual path is to start with the weakest possible
assumptions, normally, in distributed systems security, one talks about arbitrary
failure modes, over asynchronous models. The unfortunate fact is that such weak
assumptions restrain the amount of useful things that can be done. Namely:

— algorithms are safe, but normally inefficient in time and message complexity;

— deterministic solutions of hard problems such as consensus, Byzantine Agree-
ment or State Machine Replication with Atomic Broadcast are impossible,
a result known as FLP impossibility [I];

— furthermore, timed problems (e.g., e-commerce, online stock-exchange, web
applications with SLAs, SCADA, etc.) are by definition impossible in a time-
free world.

If efficient/performant FIT algorithms are sought, one has to assume con-
trolled failure modes (omissive, fail-silent, etc.). Moreover, for solving the above
problems of determinism or for building any timely services (even soft real-time),
one must relax the asynchrony assumption and assume at least partially synchro-
nous models. However, this brings a problem: these algorithms will only work
to the coverage of those assumptions. Unfortunately, relaxing these assumptions
amounts to creating attack space for the hacker, unless something is done to
substantiate them:

— controlled failures are hard to enforce in the presence of malicious faults;

— partial synchrony is susceptible to attacks on the timing assumptions;

— even in benign but open settings (e.g., Internet), synchrony is difficult to
implement.

As such, there is a significant body of research continuing to assume arbitrary
failure modes over asynchronous models, instead turning itself to weakening the
semantics of what can be achieved in those conditions.

36 P. Verissimo

Some results look very promising and useful if one is to solve non-timed prob-
lems with the highest possible coverage:

— toning down determinism, for example, through randomised versions of the
above-mentioned algorithms, e.g. consensus;

— tone down liveness expectations, for example, through indulgence, which
means that the algorithms may not be guaranteed to terminate, but they
will always keep safety;

— use other (sometimes weaker) semantics which do not fall under the FLP
impossibility result, for example, through reliable broadcast, secret sharing,
quorums, etc.

Another alternative is toning down the allowed fault or intrusion severity, for
example, through hybrid fault models [2], which imply that the quorum of f
faults that is accepted from a set of processes is divided amongst different fault
types, for example Byzantine and crash, f = fg + fe.

When even the simplest timing is needed, the system can no longer be time-
free, for example if a periodical operation or the timely trigger of an execution
are needed. In that case, one has to tone down asynchrony, for example, through
time-free or timed partially synchronous algorithms [3/4]. Some solutions to cir-
cumvent FLP, even non-timed, rely on a form of partial synchrony as well, even-
tual synchrony, such as the failure detectors [5]. However, these only fare well
under benign failure modes.

Unlike the former, these two alternatives pull the boundary of arbitrary fail-
ures and of asynchrony, respectively, a bit back, with the corresponding risks in
coverage.

3 Assumptions as Vulnerabilities

It is usually said that one should make the weakest assumptions possible. Let
us question why. For example, people assume that large-scale (i.e., Internet)
systems are asynchronous not for the sake of it, but just because it is hard to
substantiate that they behave synchronously. So, confidence (coverage) on the
former assumption is higher than on the latter one. Likewise with assuming
Byzantine vs. benign behaviour, if the system is open or not very well known. In
other words, the asynchrony/Byzantine assumptions would lead to safer designs
in this case, though probably not the most effective and efficient.

“Fvery assumption is a vulnerability”

is a frequently heard quote, which of course leads us right onto the above-
mentioned path of arbitrary failure modes over asynchronous models. Why? Be-
cause it looks like we are not making any assumption: we do not assume anything
about the behaviour of processes; we do not assume anything about time.

The caveat is that asynchrony/Byzantine yield so weak a model that it pre-
vents us from doing some important things, as shown earlier. When problems

Assumptions: The Trojan Horses of Secure Protocols 37

offer significant hardness, algorithm designers often insert some synchrony in the
underlying model, or relax the arbitrary behaviour just a bit, trying to circum-
vent these difficulties.

According to the quote above, these extra assumptions are vulnerabilities.
Furthermore, whilst some are explicit and can deserve attention from the de-
signer, such as the above-mentioned hybrid faults or timed partial synchrony,
others are implicit, like assuming that the periodical triggering of a task, a time-
out, or the reading of a clock, are meaningful w.r.t. real time in an asynchronous
model.

Observation 1 - These subtle feathers of synchrony introduce vulnerabilities
which often go undetected, exactly because they are not clearly assumed. In
fact, they are bugs in the model, as there are bugs in software: the algorithm
designer relies that the system will perform as the assumptions say, but
the latter conceal a different behaviour, just as buggy software performs
differently than assumed. The consequence is that one may no longer have
safe designs with regard to time, despite using asynchronous system models.

4 On Resource Exhaustion

Back to the “pure” Byzantine/asynchronous model, under this no-assumptions
model we tend to rely on the fact that we are not making assumptions on time
or behaviour, and consider the system extremely resilient. We assume that the
system lives long enough to do its job. Can we, really?

In fact, we are still making important assumptions: on the maximum number
of allowed faults/intrusions f; on the harshness of the environment or the power
of the attacker, respectively for accidental or malicious faults, giving the speed at
which the latter are performed; about fault independence or on the expectation
that faults/attacks do not occur simultaneously in several nodes or resources.
That is, accepting these assumptions as vulnerabilities, those systems, despite
following an asynchronous and Byzantine model, are in fact subject to several
threats:

— unexpected resource exhaustion (e.g. the number of replicas getting below
threshold);

— attacks on the physical time plane (faults and attacks produced at too fast
a rate versus the internal pace of the system);

— common-mode faults and attacks (simultaneous attacks against more than
one replica).

These problems have been recognized by researchers, who have devised some
techniques to keep systems working long enough to fulfil their mission, such as en-
suring a large-enough number of replicas at the start and/or using diversity (e.g.,
different hardware and software, n-version programming, obfuscation) to delay
resource exhaustion. However, with static or stationary f-intrusion-tolerant al-
gorithms, even in asynchronous Byzantine environments, it is a matter of time
until more than f intrusions occur.

38 P. Verissimo

This prompts us for looking critically at other parts of the proposition FIT
presented in section] like for example “for at least n — f correct processes”. In
this way, we accept that the proposition is conditional to there being n — f or
more correct processes. What if we end-up with less than n — f 7

Two things may have happened here. That fact may come from an inadequate
implementation or design decision, and there is really nothing the algorithm de-
signer can do about it: an adequate algorithm over an inadequate implementation.
However, the problem may have a more fundamental cause, something that might
be determined at algorithm design time. Were it true, and we would have an in-
adequate algorithm to start with, and no design or implementation to save it.

How should theory incorporate this fact? For example, by enriching propo-
sition FIT with a safety predicate that would assert or deny something like
“Algorithm A always terminates execution with at least n— f correct processes.”.

This predicate was called Exhaustion Safety, which informally means that
the system maintains the required resources, e.g., the amount of processes or
nodes, to guarantee correct performance in the presence of intrusions [6]. As
a corollary, an f-intrusion-tolerant distributed system is exhaustion-safe if it
terminates before f 4 1 intrusions being produced. In consequence, a result that
would establish at design time that the above predicate would almost never be
true or not be guaranteed to be true throughout execution of algorithm A4, for
whatever real setting, would imply that the algorithm, under the assumed model,
would be inadequate to achieve FIT, because it could not be exhaustion-safe.

There has been some research trying to solve the “n— f” issue, that is, trying
to keep systems working in a perpetual manner or, in other words, achieving
exhaustion-safety. The techniques used have been called reactive or proactive
recovery (e.g., rejuvenating, refreshing) [7].

Some of these works have assumed an asynchronous model with arbitrary
failures in order to make the least assumptions possible. However, given the
hardness of the problems to solve, which include for example being able to trig-
ger rejuvenations periodically or reboot a machine within a given delay, these
systems end-up making a few assumptions (some of which implicit) that in nor-
mal, accidental-fault cases, would have acceptable coverage.

However, in the malicious fault scenario, which they all address, these assump-
tions will certainly be attacked, giving room for another set of “Trojan-horse”-
like pitfalls. What leads to the pitfall is that in normal conditions, clocks and
timeouts in asynchronous systems seem to have a real time meaning, but the
truth is that a clock is a sequence counter, a timeout does not have a bounded
value. System execution and relevant assumptions follow the internal timeline,
but attacks can follow the physical timeline. In consequence, there is no formal
relation between both, the two timebases are said to be free-running. In this case,
attacks are produced by hackers in real time (external, physical time), which can
in that way delay or stall recovery until more that f intrusions are produced.
These problems would have been unveiled if the predicate resource-exhaustion
had been used and evaluated at algorithm design time [§].

Assumptions: The Trojan Horses of Secure Protocols 39

Observation 2 - The explanation of why systems that are otherwise correct ac-
cording to the stated assumptions under the asynchronous model used, may
fail, is simple. Under attack, the internal timeline can be made to slide w.r.t.
the physical timeline at the will of the attacker. For example, for a given
speed of an attack along the physical timeline, the internal timeline can be
made to progress slowly enough to enable the intrusion. However, since the
system is asynchronous, it is completely oblivious to and thus unprotected
from, this kind of intrusions: the slow execution could be a legitimate ex-
ecution. In consequence, harmful as they may be, these intrusions do not
even entail a violation of the system’s explicit assumptions and resource
exhaustion comes unwittingly.

5 On the Substance of Assumptions

Why do the things discussed in the previous sections happen? Let us introduce
a postulate:

Postulate 1: Assumptions and models should represent the execution envi-
ronment of a computation in a substantive and accurate way.

In Computer Science (like in Physics), assumptions should be substantive and
models accurate, that is, they should represent the world where the computations
are supposed to take place, faithfully enough.

In this scenario, an assumption need not necessarily be a vulnerability: if the
assumption depicts the world “as is”, there is nothing special that the adversary
can attack there. Interestingly, in the formal framework after this postulate, the
initial motto might be re-written as:

“Fvery non-substantiated assumption is a vulnerability”

One should not avoid making assumptions, but instead: make the least set
of assumptions needed to solve the problem at hand, making sure that they have
satisfactory coverage, i.e. that they represent the environment faithfully enough.
However, it is not always the case that such a postulate is followed.

Take the synchrony dimension and consider an observation made about it:
“synchronism is not an invariant property of systems” [9]. In fact, systems are
not necessarily either synchronous or asynchronous, the degree of synchronism
varies in the time dimension: during the timeline of their execution, systems
become faster or slower, actions have greater or smaller bounds. However, and
very importantly, it also varies with the part of the system being considered, that
is, in the space dimension: some components are more predictable and/or faster
than others, actions performed in or amongst the former have better defined
and/or smaller bounds.

This opened the door to some research on hybrid distributed systems mod-
els [10] which helped address and solve some of the contradictions expressed in

40 P. Verissimo

the previous sections. Suppose that we endorsed such a hybrid model, where dif-
ferent subsystems can follow different assumptions with regard to time or failure
modes.

Assuming, (1) a synchronous channel on a synchronous subsystem coexisting
with its asynchronous counterparts under hybrid distributed systems model, is
totally different from assuming, (2) that the former is achieved over an environ-
ment following the asynchronous model. Under (2), the hypothesis (synchrony)
deviates from reality (asynchrony), that is, it has limited substance and as such
is more prone to failure, for example, under attack by an adversary. This fragility
does not exist at the start under (1), since the hypothesis (synchrony) matches
reality (synchrony). Besides, coverage can be made as high as needed by con-
struction, by using architectural hybridisation, a system design technique that
matches hybrid distributed systems models [T1].

In fact, the same comments apply to a set of constructs proposed recently by sev-
eral researchers, whose common distinctive feature is the assumption of ’stronger’
components in otherwise 'weak’ systems: watchdog triggers, real time clocks and
timeouts, periodic task dispatchers, crypto chips, trusted component units, syn-
chronous or faster communication channels. Some of these systems contain an un-
spoken hybridisation, in the sense that they propose hybrid components, but work
with a homogenous model and architecture. Those constructs would perhaps be
better deployed under a computational model that understands hybridisation, and
an architecture that substantiates the ’stronger’ assumptions, to avoid the risk of
failures, either accidental or deriving from successful attacks to the vulnerabilities
caused by the model mismatches introduced [§].

Hybrid distributed systems models, versus homogeneous models, have the
advantage of letting different parts of the system follow different assumptions
and models. As such, they accurately represent the limit situations causing the
problems discussed in SectionsBland Ml

6 Conclusion

In this paper, we alerted to the fact that, in computer science, assumptions
go well beyond simple mathematical abstractions. This certainly applies to the
design of secure systems and algorithms. Assumptions should represent with suf-
ficient accuracy the environment they are supposed to depict, else they amplify
the attack space of the adversary and may become the door to security failures of
an otherwise mathematically correct algorithm. We exemplified situations where
this occurs in two sets of scenarios.

For example when arbitrary failure modes over asynchronous models are as-
sumed but some constraints to behaviour and asynchrony are inserted, without
necessarily being made explicitly, let alone enforced. These subtle feathers of
synchrony introduce vulnerabilities which often go undetected, exactly because
they are not clearly assumed. They become natural targets to the adversary.

The second scenario concerned the problem of resource exhaustion, in the
same asynchronous models. The speed of attack is fundamental to determine

Assumptions: The Trojan Horses of Secure Protocols 41

the pace at which replicas can fail in a FIT algorithm, and in consequence
help determine the speed of the defence mechanisms implemented by the same
algorithm. However, we showed that no relation between both can be formally
defined, because they develop along different timebases which are free-running.
However, such a relation is sometimes forced, with the nasty consequence that
the system becomes vulnerable in a way that subsequent intrusions may even not
entail a violation of the system’s explicit assumptions and resource exhaustion
may come unwittingly.

Both scenarios define what we may metaphorically call “Trojan-horse”-like
pitfalls: the algorithm designer relies that the system will perform as the as-
sumptions say, but in both cases the latter conceal a different behaviour.

References

1. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374-382 (1985)

2. Meyer, F., Pradhan, D.: Consensus with dual failure modes. In: Proceedings of the
17th IEEE International Symposium on Fault-Tolerant Computing, pp. 214-222.
IEEE Computer Society Press, Los Alamitos (1987)

3. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2), 288-323 (1988)

4. Christian, F., Fetzer, C.: The timed asynchronous system model. In: Proceedings
of the 28th IEEE International Symposium on Fault-Tolerant Computing, pp. 140—
149. IEEE Computer Society Press, Los Alamitos (1998)

5. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43(2), 225-267 (1996)

6. Sousa, P., Neves, N.F., Verissimo, P.. How resilient are distributed f
fault /intrusion-tolerant systems? In: Proceedings of the Int. Conference on De-
pendable Systems and Networks, pp. 98-107 (2005)

7. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing, pp. 51-59. ACM Press, New York (1991)

8. Sousa, P., Neves, N.F.; Verissimo, P.: Hidden problems of asynchronous proactive
recovery. In: Third Workshop on Hot Topics in System Dependability (HotDep’07)
(2007)

9. Verissimo, P., Casimiro, A.: The Timely Computing Base model and architecture.
Transactions on Computers - Special Issue on Asynchronous Real-Time Systems
51(8) (August 2002) A preliminary version of this document appeared as Technical
Report DI/FCUL TR 99-2, Department of Computer Science, University of Lisboa
(April 1999)

10. Verissimo, P.: Travelling through wormholes: a new look at distributed systems
models. SIGACTN: SIGACT News (ACM Special Interest Group on Automata
and Computability Theory) 37(1) (Whole Number 138) (2006)

11. Verissimo, P.: Uncertainty and predictability: Can they be reconciled? In: Schiper,
A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in
Distributed Computing. LNCS, vol. 2584, pp. 108-113. Springer, Heidelberg (2003)

	Introduction
	Classical Distributed Algorithms Design
	Assumptions as Vulnerabilities
	On Resource Exhaustion
	On the Substance of Assumptions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

