
Proactive Resilience Revisited: The Delicate Balance
Between Resisting Intrusions and Remaining Available∗

Paulo Sousa, Nuno Ferreira Neves, Paulo Verı́ssimo
Univ. of Lisboa

{pjsousa,nuno,pjv}@di.fc.ul.pt

William H. Sanders
Univ. of Illinois at Urbana-Champaign

whs@uiuc.edu

Abstract

In a recent paper, we presented proactive resilience as a
new approach to proactive recovery, based on architectural
hybridization. We showed that, with appropriate assump-
tions about fault rate, proactive resilience makes it possi-
ble to build distributed intrusion-tolerant systems guaran-
teed not to suffer more than the assumed number of faults
during their lifetime. In this paper, we explore the impact
of these assumptions in asynchronous systems, and derive
conditions that should be met by practical systems in order
to guarantee long-lived, i.e., available, intrusion-tolerant
operation. Our conclusions are based on analytical and
simulation results as implemented in Möbius, and we use
the same modeling environment to show that our approach
offers higher resilience in comparison with other proactive
intrusion-tolerant system models.

1 Introduction

Malicious attacks are an increasing problem in provid-
ing Internet services. These attacks may compromise the
correctness of a service by accessing or changing its state, or
may simply block service output, which is typically charac-
terized as a Denial-of-Service attack (DoS). Depending on
the service domain, a successful attack may have harmful
or even catastrophic consequences, since the use of on-line
services to perform critical services has grown significantly
over the past few years. On the one hand, the percentage of
services with societal impact being deployed mainly or ex-
clusively on-line is increasing (e.g., e-commerce, e-health,
and e-government). On the other hand, a number of ser-
vices provided by infrastructures that are inherently critical
are increasingly being deployed in a remote manner, some-
times through the Internet (e.g., electrical, water, and gas
facilities). Given this dependence, the goal is to deploy
system architectures that are able to resist intrusions while
maintaining availability. Although in theory these are not

∗This work was partially supported by the EC through project IST-
2004-27513 (CRUTIAL) and by the FCT through the Large-Scale Infor-
matic Systems Laboratory (LaSIGE) and project POSC/EIA/60334/2004
(RITAS). This material is also based upon work supported by the National
Science Foundation under Grant No. CNS-0406351.

conflicting goals, in reality, many current approaches to re-
sisting intruders affect availability, and intrusion-tolerance
mechanisms are haunted by the problem of exhaustion of
resources.

Building intrusion-tolerant services is a difficult task,
given that one must defend against an adversary who is act-
ing both unpredictably and intentionally. This is in contrast
with the traditional scenario, in which services were only
at the mercy of accidental faults, a predictable (to a certain
extent) adversary. For this reason, it is typically assumed
that faults can be of an arbitrary nature. However, if the
system is to keep working throughout its mission time, then
one should also ensure that the assumed number of faults
is never exceeded during that interval. In consequence, if
the maximum execution time is not known, or if it is known
but the fault rate is excessively high, a recovery mechanism
must be added to the system. Then the goal is to guarantee
that the recovery rate is greater than the fault rate, so that,
again, the assumption on the maximum number of faults is
never violated.

It is easy to see that Internet services typically fit the
scenario in which execution time is unknown: their goal is
to be constantly available, and usually a mission time does
not exist. Thus, recovery becomes a requirement. Recovery
can be done reactively, proactively, or through a combina-
tion of both. Proactive recovery is of particular interest for
many environments (including Internet services) in which
it is not always easy to diagnose faults [9]. In theory, sys-
tems that provide proactive recovery tolerate any number of
faults during the lifetime of the system, as long as no more
than f faults occur during a window of vulnerability defined
by the interval between two consecutive recoveries.

The following four problems may affect intrusion-
tolerant systems that employ proactive recovery: (1) a ma-
licious adversary may deploy more power than originally
assumed, and corrupt nodes at a pace faster than recovery;
(2) he or she may attempt to slow down the pace of recov-
ery, in order to leverage the chances of intruding the system
with the available power; (3) he or she may perform stealth
attacks on the system timing, which in asynchronous1 or

1Notice that it is possible to do attacks on the timing of asynchronous
systems, that is, on the way they make progress according to real time.



partially synchronous systems may not even be perceived
by the essentially time-free logic of the system, leaving it
defenseless; and (4) recovery procedures may make it nec-
essary to bring individual nodes to a temporarily inactive
state, lowering the redundancy quorum and thus system re-
silience.

The first problem (violation of attacker power assump-
tions) is outside the scope of this paper, and it is fundamen-
tally an unsolvable problem, since those assumptions are
at the heart of the intrusion-tolerance body of research. It
must be addressed with techniques that mitigate any lever-
age an attacker may unexpectedly try to get, such as diver-
sity, mutation, obfuscation, or trusted components, which
can complement the approach we describe here. In this pa-
per, it is shown how an architecture and generic algorithmic
approach to proactive recovery, globally designated proac-
tive resilience, addresses each of the remaining problems.
In the conditions above, our design methodology allows us
to build resilient intrusion-tolerant services that never suf-
fer more than the assumed number of faults and are always
available. To our knowledge, this is the first time that solu-
tions to these problems have been presented and analyzed,
and the elimination of these problems drastically reduces
the state-space of the attacker, as compared with previous
work. In consequence, our results may have importance
in generic on-line services, and even more in critical in-
frastructure settings.

Our conclusions are based on analytical calculations and
on simulation results obtained from the Möbius modeling
tool [5]. Both use a refinement of the exhaustion-safety de-
finition presented in [11] with a much more detailed model
of attacks and recoveries. The simulation model also in-
corporates a technique that allows the system to live un-
der two different timebases: one representing the pace of
generation of faults and/or attacks, and another represent-
ing the internal execution, e.g., of recoveries. The former
largely depends on physical events happening in real time
(such as accidental fault generation and hacker attacks) and
thus should be modeled as having a synchronous behavior,
whereas the latter depends on the internal system synchrony
assumptions. The innovation in this separation is more im-
portant than meets the eye, for at the root of our initial find-
ings [11] was the discovery that the asynchronous system
models used so far did not depict accurately enough the sub-
tle timing relations between the pace at which faults occur
and the pace at which a system executes, leading to unex-
pected failures by exhaustion of system resources. For in-
stance, a simple attack on a node’s clock drift rate may slow
down the rate of recoveries, and thus increase the probabil-
ity that another type of faults (potentially more dangerous)
will be successful. Notice that such a (timing) attack is un-
detectable under asynchronous assumptions.

In summary, this paper makes the following original

The difference between synchronous and asynchronous systems is that the
safety of protocols running in the former may depend on timing guarantees,
whereas it should not for protocols running in the latter.

contributions:

1. It enumerates and discusses four problems that may af-
fect intrusion-tolerant systems employing proactive recov-
ery;

2. It shows, analytically and through simulation, how an ar-
chitecture and generic algorithmic approach to proactive re-
covery, designated proactive resilience, addresses the three
solvable problems pointed out in item 1;

3. A collateral contribution of item 2 is a study (the first,
to the best of our knowledge) of recovery strategies with
the goal of simultaneously assuring intrusion tolerance and
availability; and

4. The simulation model used in item 2 incorporates a novel
technique that allows the system to live under two different
timebases: one representing the pace of generation of faults
and/or attacks, and another representing the pace of inter-
nal execution. Experiments with arbitrary correlations and
interleaving of these timebases can easily be defined.

2 Related Work

Intrusion tolerance is often built using agreement and/or
replication techniques that tolerate Byzantine faults. Typi-
cally, these techniques make the assumption that the number
of faults is bounded by a known value [1, 3, 6, 8]. Although
this assumption is necessary in the context of an abstract al-
gorithm design, special attention should be given when the
same algorithm is used to implement a system that is sup-
posed to resist a malicious adversary. The system architect
must guarantee that, in the worst case, the fault rate is such
that the assumed number of faults is never violated during
the lifetime of the system.

Reactive recovery works under the assumption that ma-
licious behavior can be detected before any crucial prop-
erty of the service is violated, such as the assumed num-
ber of faults. The coverage of such an assumption depends
on the nature of the service (which may force the adver-
sary to reveal himself before doing really harmful things)
and on the power of the adversary. Consider, for exam-
ple, an intrusion-tolerant service able to resist a maximum
number f of node failures. An adversary may silently com-
promise f + 1 nodes without doing any action that triggers
detection and subsequent recovery, and, after contaminating
those nodes, launch the final attack.

In order to survive attacks that circumvent detection
mechanisms, the system architect must enhance the system
with purposely-triggered recoveries, an approach known as
proactive recovery [9]. Recent work uses the proactive re-
covery approach in order to tolerate more than the assumed
number f of malicious faults [4, 14, 2, 7]. Given a window
of vulnerability defined by the interval between two consec-
utive recoveries, if no more than f faults ever occur during
such an interval, then the system tolerates any number of
faults during its lifetime.

The approach described and analyzed in this paper is



comparatively more resilient, since it eliminates the chances
of successful attacks, conspicuous or stealth, on the tim-
ing of the system’s recovery mechanisms; enforces timeli-
ness of system recovery even in asynchronous settings; and
presents recovery strategies that enforce resilience to intru-
sions whilst maintaining availability.

This last point is especially relevant, and has not been
studied in depth. Depending on the number of spares or
replicas, when recovery occurs, the redundancy quorum
may lower to the point that the system is either temporar-
ily “non-intrusion-tolerant” or temporarily “non-available.”
For example, if four replicas are needed to resist one fault,
a system with four nodes becomes fragile each time it re-
covers one replica, if its service remains available. Oth-
erwise, if the service is suspended during the recovery
process, it becomes temporarily unavailable (i.e., the quo-
rum n ≥ 3f + 1 is no longer enforced during the recovery
interval). To our knowledge, this is the first study of recov-
ery strategies with both goals in mind.

3 Node-Exhaustion-Safety

Our approach is now described in detail. In a recent
paper [12], proactive resilience was presented as a new
approach to proactive recovery, based on architectural hy-
bridization. It was shown that, for a given fault rate,
proactive resilience makes it possible to build distributed
intrusion-tolerant systems guaranteed not to suffer more
than the assumed number of faults, a predicate that was
named exhaustion-safety. In this paper, we explore the lim-
its of proactive resilience in practical systems, and derive
precise conditions that should be met in order to guaran-
tee both resilience to intrusions and availability. In conse-
quence of our findings, we present a design methodology
that makes it possible to build resilient intrusion-tolerant
services that are always available.

Given that it is impossible to foresee what a malicious
adversary will do during service execution, the system ar-
chitect should make the weakest set of assumptions possi-
ble. If an arbitrary behavior by the adversary is assumed,
this means a qualitatively worst-case scenario. Still, a door
remains open with regard to the quantitative aspects of the
adversary action: How fast can system components be at-
tacked, so that its resources become exhausted?

Recently, a novel theoretical distributed systems model
was presented that takes into account the qualitative as
well as the quantitative aspects of fault production [11].
That is, the model considers not only the type of faults
assumed (e.g., omission, Byzantine), but also the number
of faults is depicted as a function of time, as they affect
resources (e.g., replicas) along the timeline of system ex-
ecution: this is in contrast to the usual stationary f -fault
quantifier. This model allows us to represent the con-
cept of resource exhaustion, the situation when the sys-
tem no longer has the necessary resources to execute cor-
rectly (e.g., the required number of replicas). In conse-

quence, exhaustion-safety was introduced as a new pred-
icate that should be considered when designing a fault-
tolerant distributed system: a system is exhaustion-safe if
it is assured that no resource exhaustion occurs during any
execution [11]. Therefore, exhaustion-safety is a generic,
application-independent predicate, which determines the
actual resilience of a system in a more precise way than
allowed by previous models.

In this section we revisit the exhaustion-safety defini-
tion, and focus on fault-tolerant distributed systems and on
a specific resource: the system nodes. Typically, a fault-
tolerant distributed system with a number n of nodes is able
to resist a specified maximum number f of node failures. In
other words, that system needs at least n−f correct nodes in
order to guarantee that its specification is satisfied. Thus, we
say that a distributed system is node-exhaustion-safe when
it is guaranteed that no more than f node failures ever oc-
cur during any of its executions. The difficult task here is
to estimate, during system design, the appropriate number
f (and thus n) necessary to achieve node-exhaustion-safety.
This estimation depends on two factors, namely the power
of the adversaries and the power of system defenses. In-
tuitively, the difference between these two opposite forces
should never be such that f +1 nodes may be compromised
at any time.

We model a distributed system adversary through a pa-
rameter: the minimum inter-failure time, mift, which mea-
sures the speed at which the adversary is capable of attack-
ing and causing individual node failures. We want to keep
the model simple enough, so for the purpose of the paper we
assume that whenever there are dependencies between node
failures creating common failure modes (e.g., two nodes us-
ing the same operating system and thus being vulnerable to
the same type of attacks on the OS vulnerabilities), this can
be absorbed by a smaller mift. Despite this simplification,
the model is sufficiently representative to discuss the prob-
lems presented in the introduction.

We model the distributed system itself through three pa-
rameters: the maximum execution time, met; the maximum
inter-recovery time, mirt; and the maximum recovery de-
gree, mrd. The first parameter represents the maximum du-
ration of a meaningful execution (e.g., protocol run, trans-
action, or server action). The last two parameters typify sys-
tem recoveries. A recovery execution can take several steps
and recovers all the nodes of the system; hence, regardless
of whether they failed before recovery, all the nodes become
correct after a recovery. mirt specifies the maximum in-
terval between the triggering of a recovery procedure and
the termination of the next consecutive one, whereas mrd
specifies the maximum number of nodes that are recovered
simultaneously at any recovery step (i.e., a recovery proce-
dure is composed of at least � n

mrd� recovery steps, where
n is the total number of nodes). Notice that during a recov-
ery step, the nodes in question are considered to have failed.
Therefore, the system must have extra redundancy if it is to
continue operating correctly through recoveries, one of our



objectives. The discussion of how the state of the nodes is
affected by a recovery is out of the scope of this paper. In
fact, this is an advantage: our model is sufficiently generic
that it can be applied to either stateful or stateless recovery.

If the system maximum execution time met is known,
then recoveries are not necessary as long as, given f and
worst-case the fault period mift, the system avoids exhaus-
tion during execution. It is trivial to see that the follow-
ing condition should be satisfied: the system should be re-
sourced so as to tolerate f ≥ � met

mift� faults. However, if
the system has an unbounded execution time, or if there is
a bound on the amount of redundancy available, recoveries
are mandatory.

Let us start by defining node-exhaustion-safety.
Definition 3.1. Let S=(n, fa, fc,met,mift,mirt,mrd)
be a distributed system with n nodes, able to resist a max-
imum number fa ≤ n of arbitrary failures, and a maxi-
mum number fc ≤ n of crash failures, and let, for all
nodes, met represent maximum execution time; mift repre-
sent minimum inter-failure time; mirt represent maximum
inter-recovery time; and mrd represent maximum recovery
degree.

Then, S is node-exhaustion-safe iff n is such that the
system resists fa ≥ �min(met,mirt)

mift � arbitrary failures and
fc ≥ mrd crash failures.

The intuition behind the definition is that a system needs
to have enough redundancy to tolerate at least the num-
ber of arbitrary faults given by the actual maximum num-
ber of faults/intrusions that may happen between recover-
ies or until execution ends (in case the system never recov-
ers). Moreover, and in order to maintain availability, the
system should, in addition, tolerate at least the number of
crash faults given by the maximum number of nodes that
may recover simultaneously. It is easy to see that an asyn-
chronous distributed system tolerant of a constant number
fa of arbitrary faults is not node-exhaustion-safe [11]:
Corollary 3.2. Let S be a fault-tolerant distributed system
under the asynchronous model, and able to resist a known
maximum number fa of arbitrary node failures. Then, S is
not node-exhaustion-safe.
Proof. If S is asynchronous, then there is no bound on how
long S takes to process local or distributed actions. Thus,
met and mirt are unbounded, and it is impossible to guar-
antee fa ≥ �min(met,mirt)

mift �.
Notice that Corollary 3.2 applies to any type of fault-

tolerant asynchronous distributed system, including ones
using asynchronous proactive recovery [14, 15, 2, 4, 7]. The
ultimate goal of asynchronous proactive recovery is to guar-
antee that the value of mirt is such that more than fa node
failures never occur. However, as shown above, this is the-
oretically impossible by definition of asynchrony. In practi-
cal terms, it is also readily observable, since the asynchrony
pattern leading to exhaustion can be induced by a malicious
adversary, as we showed in [11].

This problem can be better understood if we consider
the following. Variables met, mift, and mirt measure

real-time intervals from an omniscient observer’s perspec-
tive. mift measures the activity leading to the production
of node failures due to faults or intrusions. mift largely
depends on physical events that happen in real time (e.g.,
accidental fault generation or external hacker attacks), and
in the worst case it is independent of the system’s speed
of execution. Also, mift needs to be lower-bounded, say
by Mift: this is an assumption of the type made in several
similar systems [14, 2, 4]. If the minimum inter-failure time
(mift) were not lower-bounded with Mift, the adversary
would have infinite power (e.g., mift=0), and it would be
impossible to derive an exhaustion-safe design. Notice that
this timing assumption is about fault production and thus is
represented in the external timebase, not compromising at
all the asynchrony of the system itself, which runs accord-
ing to the internal timebase. met measures the longest du-
ration of an execution, which is non-definable if the system
is asynchronous or if the system executes forever.

Finally, mirt defines the maximum interval between the
triggering and termination of two consecutive recoveries.
However, note that for a given target fa and assumed Mift,
we will obtain a design-time Mirt ≤ fa × Mift. This
constant Mirt will be used by the internal system timing
to trigger and execute periodic recoveries. It is perhaps im-
portant to clarify that the relation between mirt and Mirt
is not quite the same as the one existing between mift and
Mift. Mift is an assumed lower-bound on mift, which
is necessary as explained above. On the other hand, Mirt
is a design-time parameter, which results from the assumed
values for fa and Mift. This is where the problems of an
asynchronous system start. The mapping between the in-
terval Mirt as seen by the system internally and the actual
real-time interval mirt as seen by an omniscient observer
depends on the internal system synchrony assumptions. For
the sake of giving an example, let us consider an internal
time factor (itf ), with mirt=Mirt × itf .

Consider now an asynchronous fault-tolerant distributed
system with a mift=20 time units, expected to rejuvenate
periodically in intervals shorter than mirt=30 time units.
Assume also that mrd=1. From Definition 3.1, this system
is node-exhaustion-safe iff it is able to resist fa ≥ 2 (and
fc ≥ 1). Assume that one deploys such a system with fa=2,
programmed internally to rejuvenate in order that Mirt=30.
The system should be node-exhaustion-safe in theory, but
this is not necessarily true. Suppose the system’s execution
is slowed down by an internal time factor itf=3: that is, all
system actions run three times slower than expected. This is
normal behavior for an asynchronous system, by definition.
Then, whatever triggers and executes rejuvenation is also
affected by this delay: mirt=Mirt × itf = 30 × 3 = 90
time units. So in reality, the interval between the start and
termination of two consecutive rejuvenation periods is 90
time units, instead of 30 time units. However, this interval
is long enough for more than two arbitrary faults to occur,
inducing a potential system failure.

Several scenarios of interleaving of the external and in-



ternal time as just depicted will be modeled in Section 5 by
the use of different timebases. Next, we will review a model
and a methodology that allow the design of exhaustion-safe
proactive recovery systems, even of an asynchronous na-
ture.

4 Proactive Resilience Revisited

Proactive resilience is a new approach to proactive re-
covery based on architectural hybridization and hybrid dis-
tributed system modeling [13]. The Proactive Resilience
Model (PRM ) states that the architecture of a system en-
hanced with proactive recovery should be hybrid, i.e., di-
vided in two parts: the proactive recovery subsystem and
the payload system, the latter being proactively recovered
by the former. Each of these two parts should be built under
different timing assumptions and fault models.

The payload system executes the “normal” applications
and may work under an asynchronous Byzantine envi-
ronment. The proactive recovery subsystem executes the
proactive recovery protocols that rejuvenate the applica-
tions running in the payload part. This subsystem is more
demanding, by definition, in terms of timing and fault as-
sumptions, but some of these assumptions depend on the
specific proactive recovery protocol, which can be of many
types. Thus, we chose to model the proactive recovery sub-
system as an abstract component, the Proactive Recovery
Wormhole (PRW), which allows many instantiations.

In [12], the PRM and PRW were presented, together
with a design methodology under the PRM that was shown
to be a way of building generic exhaustion-safe intrusion-
tolerant systems. This section refines this design method-
ology using the definition of node-exhaustion-safety intro-
duced in Section 3.

First, we start by revisiting the definition of the PRW,
and then we describe and formally prove that the re-
fined design methodology makes it possible to build node-
exhaustion-safe intrusion-tolerant distributed systems.

4.1 The Proactive Recovery Wormhole

The Proactive Recovery Wormhole (PRW) is an abstract
distributed component that aims to execute proactive recov-
ery procedures. The architecture of a system with a PRW
is suggested in Figure 1. An architecture with a PRW has a
local module in some hosts, called the local PRW. Depend-
ing on the instantiation, the local PRWs may or may not
be interconnected by a control network. This setup of local
PRWs optionally interconnected by the control network is
collectively called the PRW. The PRW is used to execute
proactive recovery procedures of applications running be-
tween participants in the hosts concerned, on any normal
distributed system architecture (e.g., the Internet). We say
that applications run on a payload system and network, to
differentiate it from the PRW part.

Conceptually, a local PRW should be considered to be a
module inside a host, and separated from the OS. In prac-

local

PRW
local

PRW

local

PRW

optional control network

synchronous

any synchrony (payload)

application-dependent synchrony

Host A Host B Host C

Figure 1. System architecture with a PRW.
tice, this conceptual separation between the local PRW and
the OS can be achieved in either of two ways: (1) the lo-
cal PRW can be implemented in a separate, tamper-proof
hardware module (e.g., a PC appliance board) so that the
separation is physical; or (2) the local PRW can be imple-
mented on the native hardware, with a virtual separation and
shielding between the local PRW and the OS processes im-
plemented in software.

The local PRWs are assumed to be fail-silent. Every lo-
cal PRW preserves, by construction, the following property:

P1 There exists a known upper bound T local
execmax

on the
processing delays.

As mentioned, a PRW instantiation may or may not have
a control network. For instance, if a proactive recovery
procedure only requires local information, then the control
network is expendable. Even when the control network is
required, its characteristics will depend on the specific re-
quirements of the proactive recovery procedure.

Notice that the distributed PRW is not necessarily syn-
chronous. Property P1 just says that there is a bound on
local processing delays. If the PRW has a control network,
this control network can even be asynchronous. The model
is sufficiently generic to allow this [13].

The PRW offers a single service, defined as follows:
Definition 4.1. Given any function F , with a calculated
worst-case execution time of TXmax, an execution interval
TD, and a time interval (period) TP that satisfies TXmax <
TD < TP , then F is triggered by the PRW periodic timely
execution service at real-time instants ti (the ith triggering
occurs at instant ti), with TD < ti − ti−1 ≤ TP , and F
terminates within TD from ti,∀i.

In short, the PRW has the ability to execute well-defined
functions periodically in known bounded time. Moreover,
the PRW also accommodates the definition of a set of fail-
safe procedures to be triggered in certain situations: these
procedures may shut down the system if the periodic timely
execution service fails to satisfy its specification.

A triple 〈D, 〈F, TP , TD〉, S〉 defines a PRW instantia-
tion such that (1) D represents the set of data that is proac-
tively recovered in all nodes; (2) 〈F, TP , TD〉 represents the
function F that is periodically triggered with period TP and
is executed in a timely fashion within TD of each trigger-
ing, through the periodic timely execution service, for each
node; and (3) S represents the set of (optional) self-checking
mechanisms, which have the goal of guaranteeing a fail-safe
behavior of all the nodes.



4.2 Building Node-Exhaustion-Safe
Intrusion-Tolerant Systems

We propose a design methodology to build node-
exhaustion-safe distributed intrusion-tolerant systems under
the Proactive Resilience Model. The methodology has three
steps and, as already stated, is a refinement of the one pre-
sented in [12].
1. Define the data D to rejuvenate, define the rejuvenation
procedure F , and calculate F ’s worst-case execution time
(TXmax). Then, define the execution interval TD (greater
than TXmax) and the periodicity TP (greater than TD). Fi-
nally, define the actions S to be performed if F is not exe-
cuted with the required periodicity and execution time.
2. Build a PRW instantiation 〈D, 〈F, TP , TD〉, S〉. No-
tice that TP and TD may be increased if necessary. This
will only impact the required fault-tolerance degree, as ex-
plained in step 3.
3. Define the required degrees fa and fc of fault-tolerance,
such that fa ≥ �min(met,TP +TD)

mift � and fc ≥ mrd. That
is, the system must resist at least that number of faults to
be node-exhaustion-safe. Needless to say, this ultimately
determines n, the required number of nodes.

Given that at most fa faults are produced between con-
secutive rejuvenations, it is guaranteed that no more than
fa faults will ever be produced at the same time during the
entire execution of the system. Moreover, the system is al-
ways able to resist the crash of the maximum number mrd
of nodes that recover simultaneously.

Theorem 4.2. Let S = (n, fa, fc,met,mift,mirt,mrd)
be a distributed system able to resist at most fa arbitrary
node failures, and at most fc crash node failures. If S is
periodically recovered through a PRW instantiation with
parameters TP and TD, then S is node-exhaustion-safe iff
fa ≥ �min(met,TP +TD)

mift � and fc ≥ mrd.

Proof. By Definition 3.1, S is node-exhaustion-safe iff
fa ≥ �min(met,mirt)

mift � and fc ≥ mrd. Thus, it suffices
to show that TP +TD = mirt. Definition 4.1 states that the
interval between the triggering of a recovery and the termi-
nation of the next consecutive one may assume values in
]TD, TP + TD]. Thus, no inter-recovery interval may take
more than TP + TD, and then TP + TD = mirt.

5 Evaluation

This section presents the results of evaluating, through
simulation, whether or not our intrusion-tolerance ap-
proach, proactive resilience, is sufficient to achieve node-
exhaustion-safety for an assumed fault rate. It also shows
how previous approaches fail to guarantee such behavior. It
starts by presenting the modeling formalism and describing
both the models developed to represent an abstract distrib-
uted system that periodically recovers, and the adversary
that tries to break the system. Then, it presents the results
of simulating such an environment when using and not us-
ing proactive resilience.

Figure 2. SAN model for the external/internal
timebases.

5.1 SAN Models

We use stochastic activity networks (SANs) as the mod-
eling formalism. SANs are probabilistic extensions of ac-
tivity networks; the type of the extension is similar to the
extension that constructs stochastic Petri nets from classical
ones. In fact, SANs are a variant of stochastic Petri nets.
Due to space limitations, it is not possible to explain SANs
in detail. A comprehensive description can be found in [10].

We built atomic SAN submodels for a node and the
typical adversary that is constantly trying to corrupt sys-
tem nodes. We also built submodels of the external/internal
timebases and of two types of time adversaries: a conspicu-
ous one that delays the overall system execution, including
both the application and the recovery process (e.g., a DoS
attack); and a stealth time adversary that slows the inter-
nal timebases of the various nodes, thus avoiding detection.
The complete model of the system is composed using join
operations. We first present a description of each submodel,
and then show how the submodels are combined to form the
composed model.

In the remainder of the section, Figures 2, 3, and 4
present the SAN models. It is not necessary to understand
them in order to follow the explanations in the text. To
understand fully the graphical representation of the mod-
els and the models themselves, the interested reader can
find detailed explanations of the generic SAN’s formalism
in [10], and the complete documentation of the models at
http://www.navigators.di.fc.ul.pt/∼pjsousa/mobius/.

5.1.1 SAN Model for the External/Internal Timebases
The External/Internal Timebases SAN in Figure 2 mod-
els the rate at which the external and internal timebases
progress. The external timebase advances at the same rate
as the simulator clock, while the internal timebase advances
at a rate specified by a node parameter, the internal time
rate. In fact, we model two different internal timebases: the
payload one used by normal applications, and the proactive
recovery one used by the recovery mechanism. Although
these two internal timebases are coincident in a typical ho-
mogenous system, we need to separate them in order to
model our hybrid architecture.

The SAN model shown in Figure 2 is the basis of our
novel approach to intrusion-tolerant modeling and evalua-
tion. The different timebases will be used by the subsequent
submodels according to the type of dependencies they have



(a)

(b)

(c)
Figure 3. SAN models for the adversaries.
(a) Stealth time adversary, (b) Conspicuous
time adversary, (c) Classic adversary.

or do not have on the system timing assumptions.

5.1.2 SAN Model for the Stealth Time Adversary
The Stealth Time Adversary SAN in Figure 3(a) models a
special kind of adversary. This adversary does not behave
like the classic one (described in Section 5.1.4) that simply
tries to compromise system nodes, but instead has a more
specific goal: to detach a node’s internal timebase from
the external one. Such an adversary makes it possible to
model both random and intentional (i.e., maliciously trig-
gered) asynchrony. The stealth time adversary behavior is
specified through two parameters:

stealth time attack period represents the minimum exter-
nal time interval between stealth time attacks. In each at-
tack, the adversary randomly chooses its victim.

stealth time attack factor represents how much “slow-
ness” is injected in each attacked node internal timebase.

5.1.3 SAN Model for the Conspicuous Time Adversary
The Conspicuous Time Adversary SAN in Figure 3(b) mod-
els a different type of time adversary that simply delays sys-
tem actions. This adversary may be seen as a particular case
of the generic classic adversary (described in Section 5.1.4)
that develops, for instance, a DoS attack. However, we have
decided to model it separately in order to discuss in Sec-
tion 5.2 the theoretical difference between a conspicuous
and a stealth time adversary, and how malicious behavior
may be detected in one case but not in the other. The con-
spicuous time adversary behavior is specified through two
parameters:

conspicuous time attack period represents the minimum
external time interval between conspicuous time attacks. In
each attack, the adversary randomly chooses its victim.

conspicuous time attack factor represents how much de-
lay is injected in the actions of each attacked node.

5.1.4 SAN Model for the Classic Adversary
The Classic Adversary SAN in Figure 3(c) models the typ-
ical adversary that is constantly trying to corrupt system
nodes, and that ultimately exhausts the distributed system

Figure 4. SAN model for a node.

when more than the assumed number of nodes are compro-
mised. The classic adversary behavior is specified through
one parameter:

minimum inter-failure time represents the minimum ex-
ternal time interval between attacks. In each attack, the ad-
versary randomly compromises one node.

Notice that both the classic and time adversaries have
an almost entirely deterministic behavior. The only source
of randomness derives from the node targeted in each at-
tack. We could have modeled attack periodicity as random
variables following some probabilistic distribution, but we
prefer instead to consider the worst-case scenario, given that
malicious intelligence will try to make it happen.

5.1.5 SAN Model for a Node
The last submodel is the Node SAN presented in Figure 4,
which models the periodic recoveries done at each node.
This submodel is more complex than the other ones, mainly
because activities, such as refresh triggering and refresh ex-
ecution, are scheduled according to the internal timebase.
After a node recovery, the node becomes correct, its in-
ternal timebase is re-synchronized with the external one,
and any delay injected by the conspicuous adversary is re-
moved. However, during node recovery, the node is consid-
ered as being failed even if it was correct before recovery
was started. The node behavior is specified through three
parameters:

TP represents the maximum internal time interval between
two consecutive recoveries.

TD represents the maximum internal time interval between
the start and termination of a recovery.

maximum recovery degree represents the maximum num-
ber of nodes recovered simultaneously.

5.1.6 Composed Model
The composed model for the simulation environment con-
sists of the five atomic SAN submodels presented above,
organized in the following way: one Node SAN per system
node (a maximum of 7 nodes is used), one Classic Adver-
sary SAN, one Stealth Time Adversary SAN, one Conspicu-
ous Time Adversary SAN, and one External/Internal Time-
bases SAN. The composed model also includes a Monitor
submodel, which serves only statistical purposes, by col-
lecting statistics about the progress of other SANs.



The overall model behavior is specified by the parame-
ters defined for the five submodels, plus the following: n
represents the total number of system nodes, and f repre-
sents the assumed maximum number of node failures (the
sum of arbitrary and crash failures). When more than f
failures happen, the system is considered exhausted.

5.2 Simulation Results

We used the Möbius [5] tool to build the SANs, define
the availability and the intrusion tolerance measures, design
studies on the model, simulate the model, and obtain values
for the measures defined on various studies. The goal of
the simulations was to put in evidence the four problems of
proactively recovered systems that were introduced in Sec-
tion 1, recapitulated here: (1) a malicious adversary may de-
ploy more power than originally assumed and corrupt nodes
at a pace faster than recovery; (2) he or she may attempt
to slow down the pace of recovery in order to leverage the
chances of intruding the system with the available power;
(3) he or she may perform stealth attacks on the system tim-
ing, which in asynchronous or partially synchronous sys-
tems may not even be perceived by the essentially time-free
logic of the system, leaving it defenseless; and (4) recov-
ery procedures often involve bringing individual nodes to a
temporarily inactive state, lowering the redundancy quorum
and thus system resilience.

In the next subsections, it is shown that previous ap-
proaches to proactive recovery can be affected by all these
problems, and that the design methodology presented in
Section 4.2 can be used to avoid all of them with the ex-
ception of problem 1, which is a fundamental one.

We used two metrics in our simulations: percentage
of exhausted time and percentage of unavailability time.
The former shows the amount of time the system has more
than f nodes compromised and is thus very vulnerable to
failures, especially those maliciously provoked (e.g., in a
3f + 1 Byzantine-resilient system for f=1, it shows the
percentage of time the system runs with at most 2 nodes).
The latter shows the amount of time the system is unavail-
able due to recoveries, i.e., when the system cannot make
progress due to an insufficient number of correct replicas,
because some of them are recovering. Unless specified oth-
erwise, the simulations were done with parameters n=4,
f=1, mrd=1, met=10000, TP =35, and TD=4, with times
in abstract units. Notice that, according to Theorem 4.2,
and in these conditions, the sheer limit of the resistance of
the system to attacks lies around mift=TP +TD

f =39, after
which the attack is so powerful that the system starts to give
in. This, in fact, is the above mentioned fundamental limi-
tation (problem 1) for any design.

5.2.1 Impact of Time Adversaries on Exhaustion
We start by analyzing problems 2 and 3. The conspicuous
time adversary is used to trigger problem 2, and the stealth
time adversary is used to trigger problem 3.

Figure 5 illustrates how exhaustion time changes as a

function of the combined strength of the classic and the con-
spicuous time adversaries, when using asynchronous recov-
ery (a) and PRW recovery (b). With asynchronous recov-
ery, the system starts to exhaust with much higher values of
mift than the baseline resistance (i.e., with mift > 39) in
the presence of time attacks of decreasing period (Fig. 5(a)),
whereas the PRW renders the system immune to those tim-
ing attacks (Fig. 5(b)).

Figure 6 illustrates, for async recovery (a) and PRW
recovery (b), the impact of a stealth time adversary that,
every 100 time units, slows the internal timebase of a dif-
ferent node down. The graphs depict increasing amounts
of speed-down (time attack factor). As in the previous sce-
nario, the system exhausts much faster when the time attack
factor increases (Fig. 6(a)), whereas the PRW also renders
the system immune to this second type of attacks (Fig. 6(b)).
However, note that these attacks are more efficient, since
with less power (stealth attacks on, e.g., timers, or interrupt
routines, vs. conspicuous direct attacks, e.g., of the denial-
of-service type), they achieve a more dire effect, as shown
in Figure 6(a): for attack factors of 200 and up, the system
becomes almost permanently exhausted; for an attack factor
of 1000, the system is exhausted 80% of the time.

Unlike the conspicuous time attack, in which the delay
imposed is proportional to the power exerted, in the stealth
attack the amount of delay inserted is virtually indepen-
dent of the initial power used to gain control of the back-
doors to the timing devices. Furthermore, the stealth at-
tacker can more easily evade detection than the conspicuous
one: the delays injected by the conspicuous adversary may
be detected programmatically if the system is partially syn-
chronous and if the internal timebase is not compromised.
Moreover, typically these are delays that affect the entire
system and may get the attention of monitoring devices.

The attack on the internal timebase is completely differ-
ent in the sense that the adversary is attacking the time ref-
erences of the system and thus programmatic detections are
not reliable, because they use these same time references.
Moreover, the attack will not necessarily affect the entire
system. For instance, the adversary may tamper with the
kernel function that returns the current value of the local
clock, and make it return different values to different ap-
plications. Or, alternatively, the attack may be applied to
kernel scheduler/dispatcher code, only lengthening the ex-
ecution of the functions used by some processes. There-
fore, a stealth time adversary may be very difficult to defend
against in classical asynchronous or even partially synchro-
nous systems. The neutralization of this kind of attacks is
one of the main results of this paper.

5.2.2 Recovery Strategy and the Trade-off Between
Intrusion-Tolerance and Availability

Whenever a node recovers, system availability and/or
intrusion-tolerance may be affected. The system architect
has to add sufficient redundancy in order to maintain avail-
ability and intrusion tolerance during recoveries.



1000
800

600
400

200
1

800
600

400
200

1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% exhausted 

time

minimum inter-failure 

time (mift)

 conspicuous

time attack period

1000
800

600
400

200
1

800
600

400
200

1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% exhausted 

time

minimum inter-failure 

time (mift)

conspicuous

time attack period

(a) (b)
Figure 5. Exhausted time per conspicuous time attack period and minimum inter-failure time.
(a) Async recovery, (b) PRW recovery.

1000
800

600
400

200
1

12
0

04
0

06
0

08
0

0

1
0

0
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% exhausted 

time

minimum inter-failure 

time (mift)
stealth

time attack factor 1000
800

600
400

200
1

12
0

04
0

06
0

08
0

0

1
0

0
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

% exhausted 

time

minimum inter-failure 

time (mift)
stealth

time attack factor

(a) (b)
Figure 6. Exhausted time per stealth time attack factor and minimum inter-failure time.
(a) Async recovery, (b) PRW recovery.

Let us focus on a typical Byzantine fault-tolerant sce-
nario in which n=4, f=1, and nodes are recovered in se-
quence, i.e., mrd=1. When a node is being recovered, the
system temporarily has a total of three nodes. If, during this
time, the system suffers the assumed Byzantine fault, then
one of two things happens: service execution is somehow
suspended until recovery is finished, or service continues to
execute. In the former cases, the system becomes unavail-
able, whereas in the latter, it becomes exhausted (2 nodes
are failed). Notice that this decision should be taken at sys-
tem design time and performed in an automatic way.

This trade-off between intrusion-tolerance and availabil-
ity should not be hidden, although availability is a grey no-
tion in asynchronous systems. If the system architect makes
the safest option and chooses unavailability, then the system
will be systematically temporarily unavailable. This is quite
different from the normal stochastic asynchronous behav-
ior, in which the system may become slower during certain
periods of time. On the other hand, avoiding unavailability
would make the system systematically exhausted and thus
in danger of being compromised.

Figure 7(a) compares exhaustion time and unavailability
in each of the scenarios. For this simulation, we set TP =100
and TD=10. We see that with mift=1000, system resources
are never exhausted if the system stops during recoveries:
otherwise, exhaustion will occur 0.66% of the time. Then, if
the system stops during recoveries, it remains 0% exhausted

with mift=100, but it is in turn unavailable for 7.17% of the
time (precisely the amount of time the system is exhausted
if it does not stop during recoveries). Thus, if the system
does not stop during recoveries, it is naturally never unavail-
able due to recoveries, but it exhausts faster and thus has a
greater probability of failing.

In order to ensure both intrusion-tolerance and avail-
ability, the system needs a sufficient redundancy quorum
to avoid exhaustion between and during recoveries. From
Theorem 4.2, the system should be able to resist at least
fa ≥ �min(met,TP +TD)

mift � arbitrary node failures, and fc ≥
mrd crash node failures. Using the values of the scenario
above, and if we assume at design time that mift ≥ 110,
we see that f = fa + fc ≥ 1 + 1 = 2. In order to con-
firm these calculations, we simulated such a configuration
and obtained the progress of exhaustion time in comparison
with the decrease of mift. Figure 7(b) illustrates the be-
havior of a distributed system with n=7, f=2. We see that,
independent of the strategy followed, no exhaustion or un-
availability occurs if the adversary behaves as assumed (i.e.,
if mift ≥∼ 110). Otherwise, we are in problem 1, which is
unsolvable. Notice that we are not taking into consideration
the effects of intentional or random asynchrony; therefore,
TP and TD are guaranteed in both Figures 7(a) and 7(b)
(the PRW was used in both experiments). The important
message here is that, at design time, the system architect
should calculate a sufficient redundancy quorum to resist



0,00% 0,00%

90,46%

99,98%

0,66%

7,17%

0,68% 0,00%0,66%

7,17%

91,14%

99,98%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 100 10 1
minimum inter-failure time (mift)

ti
m

e
 (

%
)

exhausted time when
stopping in recoveries

unavailability when
stopping in recoveries

exhausted time when
not stopping in recoveries

0,00% 0,00%

80,11%

99,97%

0,00% 0,00%
2,08%

0,00%0,00% 0,00%

82,20%

99,97%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 100 10 1
minimum inter-failure time (mift)

ti
m

e
 (

%
)

exhausted time when
stopping in recoveries

unavailability when
stopping in recoveries

exhausted time when
not stopping in recoveries

(a) (b)
Figure 7. Trade-off between intrusion-tolerance and availability with TP =100, TD=10, mrd=1.
(a) n=4, f=1, (b) n=7, f=2.

intrusions and maintain availability as long as assumptions
on the behavior of the adversary are maintained. And, of
course, these assumptions should be realistic.

6 Conclusions
Many Internet services and all critical infrastructure ser-

vices need to be constantly available and may execute dur-
ing an unbounded period of time, consequently being sub-
ject to an unbounded number of faults. Given that it is
not always easy to diagnose faults (e.g., malicious attacks),
proactive recovery can be used to tolerate any number of
faults during the lifetime of the system.

In this paper, we pointed out the four problems that
may affect intrusion-tolerant systems employing proactive
recovery: (1) violation of adversary power assumptions; (2)
conspicuous time attacks; (3) stealth time attacks; and (4)
wrong assumptions on redundancy quorum. We showed,
analytically and through simulation, how an architecture
and generic algorithmic approach to proactive recovery,
globally designated proactive resilience, addresses prob-
lems 2, 3, and 4. Problem 1 is outside the scope of the
paper, and it is fundamentally an unsolvable problem.

The simulation model incorporates a novel technique
that allows the system to live under two different timebases:
one representing the pace of generation of faults and/or at-
tacks, and another representing its internal execution, e.g.,
of recoveries. This technique allows us to represent pre-
cisely situations that would be hidden in single-timebase
models. Specifically, when a stealth attacker, after slowing
down important time references of a system, attacks the lat-
ter at his or her own pace, the system will react/recover at a
pace it “thinks” is much higher than it actually is. This may
lead to very serious (because unexpected) failures caused
by the exhaustion of system resources.

Acknowledgment
We would like to thank Ms. Jenny Applequist for her

editorial comments that improved the quality of this paper.

References

[1] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. J. of the ACM, 32(4):824–840, 1985.

[2] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl.
Asynchronous verifiable secret sharing and proactive cryp-
tosystems. In CCS ’02: Proc. of the 9th ACM Conf. on Com-
puter and Comm. Security, pages 88–97, 2002.

[3] R. Canetti and T. Rabin. Fast asynchronous Byzantine agree-
ment with optimal resilience. In Proc. of the 25th Annual
ACM Symp. on Theory of Computing, pages 42–51, 1993.

[4] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Com-
puter Systems, 20(4):398–461, 2002.

[5] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. G. Webster. The Möbius
framework and its implementation. IEEE Transactions on
Software Engineering, 28(10):956–969, 2002.

[6] D. Malkhi and M. Reiter. Byzantine quorum systems. In
STOC ’97: Proc. of the 29th Annual ACM Symp. on Theory
of Computing, pages 569–578, 1997.

[7] M. Marsh and F. B. Schneider. CODEX: A robust and secure
secret distribution system. IEEE Trans. Dependable Sec.
Comput., 1(1):34–47, 2004.

[8] N. F. Neves, M. Correia, and P. Verı́ssimo. Solving vector
consensus with a wormhole. IEEE Transactions on Parallel
and Distributed Systems, 16(12):1120–1131, 2005.

[9] R. Ostrovsky and M. Yung. How to withstand mobile virus
attacks (extended abstract). In Proc. of the 10th ACM Symp.
on Principles of Distributed Computing, pages 51–59, 1991.

[10] W. H. Sanders and J. F. Meyer. Stochastic activity networks:
Formal definitions and concepts. In E. Brinksma, H. Her-
manns, and J.-P. Katoen, editors, European Educational Fo-
rum: School on Formal Methods and Performance Analysis,
volume 2090 of LNCS, pages 315–343. Springer, 2000.

[11] P. Sousa, N. F. Neves, and P. Verı́ssimo. How resilient are
distributed f fault/intrusion-tolerant systems? In Proc. of
the Int. Conf. on Dependable Systems and Networks, pages
98–107, 2005.

[12] P. Sousa, N. F. Neves, and P. Verı́ssimo. Proactive resilience
through architectural hybridization. In Proc. of the 2006
ACM Symp. on Applied Computing, pages 686–690, 2006.

[13] P. Verı́ssimo. Travelling through wormholes: A new look
at distributed systems models. SIGACT News, 37(1):66–81,
2006.

[14] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure
distributed on-line certification authority. ACM Transactions
on Computer Systems, 20(4):329–368, 2002.

[15] L. Zhou, F. B. Schneider, and R. V. Renesse. Apss: Proactive
secret sharing in asynchronous systems. ACM Trans. Inf.
Syst. Secur., 8(3):259–286, 2005.


