
Timely ACID Transactions in DBMS

 Marco Vieira António Casimiro Costa Henrique Madeira
ISEC-CISUC, Coimbra, Portugal FCUL, Lisboa, Portugal DEI-CISUC, Coimbra, Portugal
 mvieira@isec.pt casim@di.fc.ul.pt henrique@dei.uc.pt

1. Introduction

Developing database applications with timeliness

requirements is a difficult problem. During the execu-
tion of transactions, database applications (with timeli-
ness requirements) have to deal with the possible oc-
currence of timing failures, when the operations speci-
fied in the transaction do not complete within the ex-
pected deadlines.

In spite of the importance of timeliness requirements
in database applications, the transaction engines of
database management systems (DBMS) do not assure
any temporal property, not even the detection of the
cases when the transaction takes longer than the ex-
pected/desired time.

Our goal is to investigate ways to add timeliness
properties to the typical ACID (Atomicity, Consis-
tency, Isolation, and Durability) properties supported
by most DBMS.

2. Existing DBMS transactions

A database is a collection of data describing the ac-

tivities of one or more related organizations [1]. The
software designed to assist in maintaining and using
databases is called database management system, or
DBMS. The need for such systems, as well as their use,
has grown rapidly in the last two decades. A DBMS
allows users to define the data to be stored in terms of a
data model, which is a collection of high-level metadata
that hide many low-level storage details. Most DBMS
today are based on the relational data model, which
was proposed by E. F. Codd in 1970 [2]. The relational
data model is very simple and elegant, and defines a
database as a collection of one or more relations, where
each relation is a table with rows and columns.

In practice, a typical database application (e.g.,
banking, insurance companies, all sort of traveling
businesses, telecommunications, wholesale retail, com-
plex manufacturing processes, etc, etc) is a client-
server system (either a traditional client-server or a
three tier system) where a number of users are con-
nected to a database server via a terminal or a desktop

computer. The user actions are translated into SQL
commands (the relational language used by DBMS) by
the client application and sent to the database server.
The results are sent back to the client to be displayed in
the adequate format by the client application.

A very important notion in DBMS is the concept of
transaction [3]. In a simplified view, a transaction is a
set of commands that perform a given action and takes
the database from a consistent state to another consis-
tent state. Transaction management is an important
functionality of DBMS and it is directly related to de-
pendability, particularly in what concerns to concur-
rency control (essential to assure data integrity) and
recovery. Concurrency control is the activity of coordi-
nating the actions of processes that operate in parallel
and access shared data, and therefore potentially inter-
feres with each other. Recovery assures that faults do
not corrupt persistent data stored in the database tables.

In order to correctly deal with concurrency control
and recovery, DBMS transactions must fulfill the fol-
lowing properties (also known as ACID properties):
atomicity (either all actions in the transaction are exe-
cuted or none are), consistency (the execution of trans-
actions results in consistent database states), isolation
(the effects of a transaction must be understood without
considering other concurrently executing transactions),
and durability (the effects of a transaction that has
been successfully completed must persist, even when
the system has a failure after transaction finishing).

3. Timely ACID Transactions

In many situations timeliness is more important than

correctness, which means that (approximate) correct-
ness can be traded for timeliness [4]. Similarly, atomic-
ity issues may be relaxed. For instance, in many data-
base applications, when a transaction is submitted and
it does not complete before a specified deadline that
transaction becomes irrelevant. This means that, the
DBMS can automatically rollback the execution of the
transaction if the deadline is exceeded. However, as
there are no mechanisms implemented in existing
DBMS able to detect this kind of timing failures, the
automatic abortion of transactions is not possible.

There are also situations, where the database user
must be informed when the execution of a transaction
do not complete in a specified deadline. For instance,
the collection of information about timing failures and
the temporal execution of transactions can be used to
feed a monitoring component or to tune specific appli-
cation parameters in order to adapt its behavior to the
actual load conditions of the transactional system.

Our proposal is to add the timeliness property to the
transactions. As mentioned before, most DBMS sup-
port transactions with ACID properties. Our goal is to
extend DBMS in order to support transactions with
TACID properties (timeliness, atomicity, consistency,
isolation, and durability).

4. Timely Computing

One of our objectives is to use the Timely Comput-

ing Base (TCB) model [5] as the framework for the
work presented in this paper. Essentially, a system with
a Timely Computing Base is divided into two well-
defined parts: a payload and a control part. The generic
or payload part prefigures what is normally ‘the sys-
tem’ in homogeneous architectures, and is where appli-
cations such as DBMS execute. The control part,
which we call the TCB, is a comparably much smaller
part of the system, which can thus be designed to pro-
vide “better” timeliness properties than the payload
part of the system. In fact, the TCB must be designed
as a synchronous component, whereas the payload part
of the system may have any degree of synchronism.

A TCB can be seen as an oracle providing time-
related services to applications or middleware compo-
nents. Therefore, a set of minimal services has to be
defined, as well as a payload-to-TCB interface.

Previous TCB implementations [6] were designed to
provide a set of generic services, potentially useful to a
large range of applications (e.g. multimedia, control,
security): a Duration Measurement service, a Timing
Failure Detection (TFD) service and a Timely Execu-
tion service. Now, when considering the specific case
of DBMS with TACID properties, it is important to
understand which are the new challenges raised by this
kind of application and how can the TCB model be
applied in this environment.

As a result of our initial investigations, we identified
the following challenges:
Definition of TCB services: in order to optimize and

simplify the TCB oracle, it is fundamental to pro-
vide just the strictly necessary functionality, which
is yet unknown.

Definition of payload-to-TCB interfaces: specific
programming styles of DBMS may be exploited to
design more adequate interfaces.

Definition of scalability measures: the definition of a
synchronous, predictable TCB environment will
impose severe scalability restrictions if not conven-
iently addressed. Several measures, like multiplexing
or merging, might have to be defined and applied.

5. Planned experiments

To extend DBMS in order to support transactions

with TACID properties, the transactional engine of the
DBMS has to be modified to include the detection of
timing failures.

For the evaluation of the feasibility of timeliness
transactions on database applications we are planning
to use the PostgreSQL DBMS. The PostgreSQL
DBMS is one of the most complete open-source data-
bases available (it is one of the few open-source data-
bases that support transactions). PostgreSQL is a small-
size DBMS that is frequently used to support non-
critical applications. For these reasons, we have chosen
this DBMS as case study to figure out ways to add the
timeliness property to the transactions supported by
this DBMS.

The TCB will be used (and maybe included as part,
or as an oracle of the DBMS) to detect timing failures
and notify the client applications about the occurrence
of this type of failures.

References

[1] R. Ramakrishnan, “Database Management Systems” sec-
ond edition, McGraw Hill, ISBN 0-07-232206-3, 1999.

[2] E. F. Codd, "A Relational Model of Data for Large
Shared Data Banks ", Communications of the ACM, 1970.

[3] J. Gray and A. Reuter, “Transaction Processing: Concepts
and Techniques”, The Morgan Kaufmann Series in Data
Management Systems, Jim Gray, 1993.

[4] K. Ramamritham, "Real-Time Databases", International
Journal of Distributed andParallel Databases, 1996.

[5] P. Veríssimo and A. Casimiro. “The Timely Computing
Base model and architecture”. Transactions on Computers -
Special Issue on Asynchronous Real-Time Systems, 2002.

[6] A. Casimiro, P. Martins and P. Veríssimo. “How to Build
a Timely Computing Base using Real-Time Linux”. In Proc.
of the 2000 IEEE Workshop on Factory Communication
Systems, pp.127–134, Porto, Portugal, September 2000.

Acknowledgements
Funding for this paper was provided, in part, by Portuguese
Government/European Union through R&D Unit 326/94
(CISUC) and by the European Union, through DBench pro-
ject, IST 2000 - 25425 (DBENCH) and Cortex project, IST-
FET-2000-26031 (CORTEX).

